Señales y Sistemas, Sistemas LDCID, Transformada de Fourier

La Transformada de Fourier – Definición y propiedades.

La Transformada de Fourier es un instrumento de gran valor para analizar las funciones no periódicas. Complementa de esta manera a la Serie de Fourier, que permite analizar sistemas donde están involucradas las funciones periódicas.

Es decir, mediante la Serie de Fourier podemos representar una señal periódica en términos de sus componentes sinusoidales, cada componente con una frecuencia en particular. La Transformada de Fourier permite hacer esto mismo con señales no periódicas.

Definición

Fourier razonó que una señal aperiódica puede considerarse como una señal periódica con un periodo infinito. De manera más precisa, en la representación en Serie de Fourier de una señal periódica, conforme el período se incrementa, la frecuencia fundamental disminuye y las componentes relacionadas armónicamente se hacen más cercanas a la frecuencia. A medida que el periodo se hace infinito, las componentes de frecuencia forman un continuo y la suma de la serie de Fourier se convierte en una integral.

Sea f una función real definida en el dominio continuo, dígase f(t) definida en el dominio t. Entonces, la Transformada de Fourier (TF) se define como:

null

Se dice que una señal f(t) tiene Transformada de Fourier si la integral de la ecuación (1) converge (es decir, existe). La integral converge si f(t)  “se comporta bien” y si es completamente integrable; esta última condición significa que:

null

Todas las señales reales se comportan bien, y por tanto satisfacen la condición anterior. Es decir, la mayoría de las señales reales tiene TF. Sin embargo, el siguiente es un ejemplo de una señal que no tiene TF:

null

La señal de la ecuación (3) es bien conocida como señal de CD o señal constante. Y no tiene TF porque no es una señal real, es decir, ninguna señal que es diferente de cero todo el tiempo puede ser físicamente posible. Si sustituimos esta señal en la ecuación (1) podríamos comprobar que esta integral no converge sólo con observar que el área bajo la señal constante es infinita, por lo que dicha integral no tiene un valor finito. Más adelante, sin embargo, mostraremos que una señal constante si tiene TF en un sentido generalizado.

El par de Transformada de Fourier

Podemos definir dos integrales que se llaman el par de Transforma de Fourier:

null

Para que exista la TF de f(t), se debe cumplir que:

null

F(ω) es la transformada del espectro de f(t). De aquí vemos que f(t) está siendo analizada en un número finito de componentes de frecuencia con amplitud infinitesimal igual a:

null

Consideraciones sobre la Transformada de Fourier

1. En general F(ω)  es una función compleja, que transforma una señal dada en sus componentes exponenciales;

2. F(ω) se llama la Transformada de Fourier directa de f(t), y representa las amplitudes relativas de varias componentes de frecuencia, así F(ω)  es la representación de f(t) en el dominio de la frecuencia:

null

3. La representación en el tiempo de f(t) especifica una función a cada valor del tiempo, mientras que F(ω)  especifica las amplitudes relativas de las componentes de frecuencia de la señal, para cada valor de frecuencia.

4. Así, F(ω)  es una función compleja con la siguiente forma:

null

F(ω) es una función compleja que puede ser representada gráficamente por la magnitud null y la fase Θ(ω)  versus la frecuencia. De esta manera, la gráfica de null  se llama Espectro Continuo de Amplitud de f(t), y la gráfica de Θ(ω) se llama Espectro Continuo de Fase de f(t). El espectro se dice que es un espectro continuo, ya que ambos, el de amplitud y el de fase de F(ω) , son funciones continuas de la frecuencia ω. Esta representación gráfica de ambos espectros se conoce como El Espectro de Frecuencia. Notar la diferencia que existe entre este espectro continuo y el espectro discreto generado por la Serie de Fourier.

5. En muchos casos F(ω) es real o imaginario puro. Por lo cual sólo se necesita una sola gráfica ya que:

null

Propiedades de la Transformada de Fourier

La relación entre una señal y su Transformada de Fourier se denotará de la siguiente manera:null

Lo siguiente es un resumen de las propiedades más resaltantes de la TF:

null

null

null

null

null

null

null

Fuentes:

  1. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab
  2. Análisis de sistemas lineales asistido con Scilab, Ebert Brea.
  3. Analisis_de_Sistemas_Lineales
  4. Oppenheim – Señales y Sistemas

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s