Sin categoría

Ejemplo masa unida a extremo resorte – Báscula – ecuaciones

En una fábrica de básculas se realizan pruebas para mejorar la calidad, una masa de 3 kilogramos está unida al extremo de un resorte estirado 20 centímetros por una fuerza de 15 Newtons. Es puesto en movimiento en posición inicial x=0 y velocidad inicial de -10 m/s

    1. Encuentre la ecuación que describe el movimiento x(t)
    2. Calcule la amplitud, el periodo y la frecuencia del movimiento
    3. Calcule la posición, velocidad y aceleración del cuerpo 1 segundos después de iniciado el movimiento.
Respuesta:

Una báscula es un instrumento técnico diseñado para calibrar el peso de una masa. En la primera etapa del problema el resorte está estirado 20 cm, con una masa de 3 Kg en su extremo, sometido a una fuerza de 15 N, como en la Figura 1:

null

Figura 1

El resorte está sometido a la acción de dos fuerzas: la fuerza F1=15 N, y la fuerza F2 del peso de la masa de 3 Kg, es decir:

null

Por la Ley de Hooke sabemos que el resorte se estira x=20 cm bajo la acción de estas dos fuerzas y según la fórmula siguiente:

null

De donde obtenemos el valor de la constante k:

null

En la segunda etapa del problema el resorte es puesto en movimiento en la posición inicial x=0 y con velocidad inicial vo=-10 m/s. Suponiendo que el desplazamiento es positivo hacia abajo, acudimos a la segunda ley de Newton:

nullDónde:

null

Por lo tanto:

null

Aplicamos transformada de Laplace:

null

Pero sabemos del enunciado que:

null

Sustituyendo obtenemos:

null

Despejamos X(s):

null

Para aplicar la antitransformada consideramos la siguiente tabla:

null

Entonces:

null

Aplicando la antitransformada de Laplace obtenemos x(t):

null

Podemos ver en la ecuación (1) que el desplazamiento del resorte es una oscilación infinita. Esto sucede porque no el sistema no tiene, idealmente, amortiguación. De la ecuación (1) podemos obtener los siguientes datos:

null

Para encontrar la posición en t= 1 s, sustituimos este valor en la ecuación (1):

null

El signo negativo del resultado anterior indica que el resorte se ha movido hacia arriba. Para encontrar la velocidad v(t) en t= 1 s , derivamos la ecuación (1):

null 

El signo negativo del resultado anterior indica que el resorte se mueve hacia arriba. Para encontrar la aceleración a(t) en t= 1 s , derivamos la ecuación (2):

null

Te puede interesar también:

Escrito por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Jaén – España: Tlf. 633129287

Caracas, Quito, Guayaquil, Lima, México, Bogotá, Cochabamba, Santiago.

WhatsApp: +34 633129287

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Sin categoría

Ejemplo de funciones de carga y corriente de un circuito RLC

Una compañía de dispositivos electrónicos realiza pruebas para mejorar la calidad de sus productos, y quiere determinar la carga en el capacitor de un circuito LRC en serie cuando L=0.5 H, R=10 Ω, C=0.001 F, E(t)=150 V, q(0)=1 C, i(0)=0 A, Cuáles son las funciones de carga y de corriente del circuito? (1era parte)

Respuesta:

Las funciones de carga y de corriente del circuito están compuestas por la respuesta natural (homogénea) y la respuesta forzada (particular o permanente):

null

Para estudiar la respuesta homogénea, consideramos el circuito RLC de la Figura 1. Este circuito se excita con la energía inicialmente almacenada en el capacitor y el inductor:

null

Figura 1

Dónde:

null

Al aplicar LVK al circuito de la Figura 1, obtenemos:

nullEn el tiempo t=0 s, la ecuación (1) se puede escribir como:

nullDe donde:

null

Para eliminar la integral de la ecuación (1) derivamos con respecto a la variable t:

null

Ordenamos la ecuación (2) para obtener la forma estándar:

null

Sustituyendo valores en la ecuación (3) obtenemos:

null

Con la ecuación (4) formamos un polinomio D en función de una variable p:

null

El polinomio de la ecuación (5) es denominado ecuación característica. Hallamos las raíces de la ecuación (5):

null

Estas raíces generan soluciones sinusoidales que decrecen exponencialmente de la forma: Para cada par de raíces complejas conjugadas simples del tipo null  aparecerá en la solución un término de la forma:

nullPor tanto:

null

En el estado permanente el capacitor se comporta como un corto, por lo que:

nullPor tanto:

null

Para hallar el valor de las constantes, utilizamos las condiciones iniciales:

null

Donde U(t) es la función escalón unitario. Una vez determinada la expresión para la corriente, debemos considerar el circuito de la Figura 2  para hallar el voltaje Vc en el capacitor:

Circuito RLC.png

Figura 2.

Al aplicar LVK al circuito de la Figura 2, obtenemos:

null

Necesitamos la derivada de la corriente:

null

Despejamos Vc de la ecuación (7):

null

En definitiva:

null

A continuación  las gráficas para ic(t) y Vc(t):

nullGráfica 1

Análisis: En la gráfica 1, el voltaje en el capacitor oscila alrededor de 150 V, luego esa oscilación, que es el comportamiento natural del sistema, desaparece, y sólo queda la respuesta en estado estable, que es cuando el voltaje del capacitor es igual al voltaje de la fuente.

null

Gráfica 2

Análisis: En la gráfica 2, la corriente en el capacitor oscila en su etapa de transición (respuesta natural). Podemos ver que al principio es cero como lo señala la condición inicial. Luego de oscilar se estabiliza en cero, que es cuando el capacitor se ha cargado y actúa como un circuito abierto.

2DA PARTE
  • Una compañía de dispositivos electrónicos realiza pruebas para mejorar la calidad de sus productos, y en un circuito sencillo la resistencia es 20 Ω y la inductancia es de 0.25 H, C=1/300 F. Si E(t)=0 V, q(0)=4 C, i(0)=0, el interruptor se cierra, encontrar:
    1. Las funciones q(t), i(t).
    2. i, q después de 2 segundos

Respuesta: Ejercicio RCL 2da parte

Te puede interesar también:

Escrito por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Jaén – España: Tlf. 633129287

Caracas, Quito, Guayaquil, Lima, México, Bogotá, Cochabamba, Santiago.

WhatsApp: +34 633129287

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

 

Análisis de circuitos eléctricos, Diagramas de bloques, Función de Transferencia, Ingeniería Eléctrica, Sin categoría

Problemas de Modelo de sistemas eléctricos en variable de estado, función de transferencia, diagrama de bloques, simulación en matlab-simulink

Modelo de sistemas eléctricos en Matlab. Para los circuitos de las Figuras 1, 2, 3 y 4, determinar:

  1. Modelo en espacio de estados
  2. Diagrama de bloques a partir del modelo en espacio de estados
  3. Función de transferencia a partir del modelo en espacio de estados
  4. Simular en Matlab – Simulink, según los siguientes estilos de simulación:
    • Diagrama de bloques
    • El modelo en espacio de estados
    • Las funciones de transferencia
    • Interpretar los resultados.

null

null

null

null

Respuesta:

Para adquirir esta solución se facilita pago a través de Paypal o con TC.

Problemas resueltos – Modelos de sistemas eléctricos

Observación: Pago por cuatro (4) ejercicios. Solicitar la entrega en PDF al whatsapp +34633129287

€37,00

Fuente:

  1. Introduccion-al-analisis-de-circuitos-robert-l-boylestad,
  2. Análisis de Redes – Van Valkenburg,
  3. Fundamentos_de_circuitos_electricos_5ta
  4. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Sin categoría

Examen resuelto de redes eléctricas en CC – Nivel básico.

  1. Considerando el circuito de la Figura determinar:

a) Determinar la corriente que pasa por todos los elementos;

null

null

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV Caracas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

 

Análisis de sistemas de control, Estabilidad, Sin categoría

Ejemplo de análisis de estabilidad con diagrama de Nyquist

El criterio de Nyquist puede decirnos si el sistema es estable o inestable al determinar cuántos polos del sistema a lazo cerrado de la Figura 1, se encuentran en el semiplano derecho:

null

Figura 1

Diagrama de Nyquist con Matlab

Considere la siguiente función de transferencia a lazo abierto:

null

Para elaborar el Diagrama de Nyquist, podemos utilizar los siguientes comandos en el command window de Matlab:

>> s=tf(‘s’)

>> G=1/(s^2+0.8*s+1)

>> nyquist(G)

Esta línea de comandos genera la siguiente gráfica:

null

Podemos obtener información sobre puntos de interés en el diagrama de Nyquist haciendo clik una vez sobre el punto de interés en el contorno:

null

Ejemplo:

null

Step 1. Find the open-loop transfer function G(s)H(s) of the system.

Consider the closed-loop control system as follows:

null

The system characteristic equation is as follows:

null

The factor form of this characteristic equation is:

null

To determine the previous factor form:

null

Where the open-loop transfer function G(s)H(s) of the system is:

null

Step 2. Use Command Window of Matlab to draw the Nyquist Diagram, applying the following commands:

>> s=tf(‘s’);

>> G=10/(s^3+2*s^2+5*s);

>> nyquist(G);

null

null

We can see at the previous Diagram that for:

null

To reach stability, Z must be equal to zero:

null

Recalling that the poles of 1+ G(s)H(s), are the same as the poles of G(s)H(s), the open-loop system, we can determine P, the number of open-loop poles enclosed by the contour A from:

null

null

A detour around the poles on the contour is required:

null

In the Nyquist Diagram obtained for the system of Task 2, the point -1+j0 is highlighted in red:

null

We can see that N=0, so:

null

However, the Nyquist diagram intersects the real axis at -1+j0. Hence, according to the Nyquist Criteria, the system is marginally stable.

Fuentes:

  1. Modern_Control_Engineering, Ogata 4t
  2. Control Systems Engineering, Nise
  3. Sistemas de Control Automatico, Kuo

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Análisis de circuitos eléctricos, Ingeniería Eléctrica, Sin categoría

Respuesta natural y forzada de un circuito RC – Definición y ejemplos

La respuesta natural de un circuito RC se puede determinar a partir del siguiente ejemplo:

null

Respuesta natural

Suponemos que el interruptor ha estado en la posición “a” por mucho tiempo, lo que permite que el lazo formado por la fuente de tensión constante, Vg, la resistencia R1 y el condensador c alcancen una posición de estado permanente.

Hay que tener en cuenta que el condensador se comporta como un circuito abierto cuando se le aplica una tensión constante. De tal modo, la fuente de tensión no puede sostener una corriente y, por ello, la tensión de la fuente aparece en las terminales del condensador. Debido a que no hay cambio instantáneo de la tensión en los terminales de un condensador, el problema queda reducido a resolver el siguiente circuito:

null

Podemos encontrar fácilmente la tensión v(t) pensando en términos de tensiones en los nudos. Utilizando el nudo inferior de R y C como nudo de referencia y sumando la corriente que se aleja del nudo superior:

null

Al resolver esta ecuación, obtenemos que:

null

Como se ha determinado antes, la tensión inicial del condensador es igual a la tensión de la fuente de tensión Vg:

null

dónde v(0)  es la tensión inicial en el condensador. La constante de tiempo para el circuito RC es igual al producto de la resistencia y la capacidad:

null

Así, en términos de la constante de tiempo:

null

La respuesta natural de un circuito RC es una caída exponencial de la tensión inicial. La constante de tiempo RC es un parámetro que regula la velocidad a la que decrece la tensión. La siguiente gráfica representa la ecuación de v(t)  y la interpretación gráfica de la constante de tiempo.

null

Al contar con la expresión para el voltaje, otros parámetros pueden ser determinados:

null

El cálculo de la respuesta natural de un circuito RC se puede resumir en:

  1. Determinar la tensión inicial V(0), en el condensador.
  2. Encontrar la constante de tiempo en el circuito.
  3. Utilizar la ecuación:

null

Ejemplos:
Respuesta forzada

 Es posible encontrar la respuesta al escalón de un circuito RC de primer orden analizando el circuito de la figura:

null

Para esto, calculamos el equivalente Norton de la red conectado al condensador equivalente.

null

Si ecuación la dividimos por C,

null

Resolviendo esta ecuación obtenemos que la respuesta completa, natural más forzada, del voltaje del condensador es:

null

Dónde:

null

Al contar con la expresión para el voltaje, otros parámetros pueden ser determinados:

null

Ejemplo:
  1. Considerar el siguiente ejemplo:

2. Hallar la corriente del nudo A al B:

null

Respuesta:

null

Siguiente:

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV Caracas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Ingeniería Electrónica, Sin categoría

Problema de circuito con Par Diferencial MOSFET

La Figura 1 muestra un par diferencial con transistores MOSFET:

null

Figura 1

Se pide:

null

Para ver la respuesta visitar: Problema de Par Diferencial con MOSFET

Te puede interesar también:

  1. Problema de circuito con amplificador BJT
  2. Función de transferencia de circuito con amplificador MOSFET
  3. Examen de electrónica – Modelo y solución

Escrito por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – Twitter: @dademuch

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV Caracas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Matemática aplicada - Appd Math, Sin categoría

Proceso aleatorio y estocástico

Un proceso ergódico debe ser estacionario, dado que sería imposible estimar una f.d.p. variante en el tiempo a partir de una única realización.

Dado que la idea subyacente del procesado de señales estocásticas es conocer algunos detalles acerca de la f.d.p. que define dicho proceso, un problema importante para el procesado de señales estocásticas es cómo estimar dicha f.d.p. a partir de una única realización de dicho proceso. En otras palabras, cuando tenemos datos de un proceso aleatorio sólo hacen referencia a una realización temporal de dicho proceso. Sin embargo, existen infinidad de posibles realizaciones como esa. Debido a que no podemos estudiarlas todas en la práctica, tenemos que estimar o aproximar el valor del proceso aleatorio global a la información que poseemos en nuestros datos.

La suposición que nos permite tomar esta aproximación se llama ergodicidad, que establece que “los promedios temporales convergen al valor que se pretende estimar del conjunto de todas las realizaciones”. Por ello, un proceso ergódico debe ser estacionario, dado que sería imposible estimar una f.d.p. variante en el tiempo a partir de una única realización.

Para el caso de un proceso aleatorio ergódico, se tendrá que cumplir que las características estadísticas de los promedios temporales sean iguales a sus correspondientes promedios de conjunto. Es decir, si al analizar las propiedades de media y función de autocorrelación (en la práctica se considera suficiente con estas dos) de cada una de las funciones muestrales coinciden con las propiedades de los promedios de conjunto (para un tiempo dado), hablaremos de un proceso aleatorio ergódico y de esta forma podremos conocer las características del proceso global a partir de una única realización del proceso aleatorio.

De la teoría sabemos que para que un proceso aleatorio sea estacionario en sentido amplio, se debe cumplir:

  • La media del conjunto debe ser independiente del tiempo:

null

  • La función de autocorrelación de conjunto depende sólo de la diferencia de tiempos de observación:

null

Para el caso de un proceso aleatorio ergódico, se tendrá que cumplir que las características estadísticas de los promedios temporales sean iguales a sus correspondientes promedios de conjunto. Es decir, si al analizar las propiedades de media y función de autocorrelación (en la práctica se considera suficiente con estas dos) de cada una de las funciones muestrales coinciden con las propiedades de los promedios de conjunto (para un tiempo dado), hablaremos de un proceso aleatorio ergódico y de esta forma podremos conocer las características del proceso global a partir de una única realización del proceso aleatorio.

Fuentes:

Practica 2. Procesos aleatorias, propiedades estadísticas, estacionariedad y ergodicidad

Fundamentos de Comunicación y Transmisión

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV Caracas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Análisis de circuitos eléctricos, Ingeniería Eléctrica, Sin categoría

Problema de circuito con inductores en serie y en paralelo

Problema 1. En el circuito de la Figura 2, las corrientes iniciales de las bobinas se supone que han sido establecidas para t <0.  Al cerrar el interruptor, se sabe que la tensión en los extremos de la caja negra es:

null

Se sabe que la energía inicial WL en las bobinas A y B es la misma, con un valor de:

null

  1. Determinar la expresión para io(t).
  2. Calcular la energía atrapada en cada bobina si suponemos que el interruptor queda cerrado para siempre.
  3. Calcular el porcentaje de energía, sobre la energía inicial en las bobinas, que se entrega a la caja y compruebe el resultado del apartado anterior.
  4. Represente, de forma aproximada, las tensiones y corrientes en todas las bobinas.
Respuesta:
  1. Problema. Para adquirir esta solución se facilita pago a través de Paypal o con TC.

Problema de inductores en serie o en paralelo

Observación: Pago por un ejercicio. Solicitar la entrega en PDF al whatsapp +34633129287

€10,00

Fuente:

  1. Introduccion-al-analisis-de-circuitos-robert-l-boylestad,
  2. Análisis de Redes – Van Valkenburg,
  3. Fundamentos_de_circuitos_electricos_5ta
  4. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com