Matemática aplicada - Appd Math, Transformada Z

La Transformada Z – Análisis de sistemas discretos.

La Transformada Z (TZ) es una herramienta que proporciona un método para caracterizar las señales y los sistemas de tiempo discreto por medio de polos y ceros en el dominio Z transformado.

X(z), La Transformada Z, es el equivalente de la Transformada de Laplace para tiempo discreto. Puesto que z es una variable compleja, el dominio Z es un plano complejo.

La transformada Z directa X(z) de una señal x[n] se define como la serie de potencias:

null

Dónde z es el número complejo:

null

La ecuación (1) mapea la señal definida en el dominio del tiempo discreto, a la función definida en el dominio Z, lo que se denota como:

null

La notación para la relación entre ambos dominios es:

null

Como la ecuación (1) es la suma de una serie geométrica, solo existe para aquellos valores del plano complejo para los que la suma no diverge. Esto nos lleva al concepto de región de convergencia (ROC – Region of Convergence).

La ROC de una transformada X(z) es el conjunto de todos los valores de la variable compleja z para los que X(z) es finita:

null

El par transformado no es único hasta que no se añade la información relativa a la ROC. Por ello, las tablas de pares z-transformados incluyen una tercera columna con su información de la ROC.

A continuación los pares transformados para las señales discretas más importantes en el área del procesamiento de señales:

null

null

Ejemplos:

null

Propiedades de la ROC.
  • La Transformada X(z) junto con la ROC definen de forma inequívoca la secuencia x[n], es decir, sin la información de la ROC, existe indeterminación en el cálculo de la antitransformada.
  • La ROC de cualquier secuencia tiene simetría circular en torno al origen sobre el plano Z, porque la convergencia sólo depende de .
  • La ROC no puede contener polos porque, por definición, la evaluación de X(z) sobre un polo produce divergencia.
  • La ROC de secuencias de duración finita (sin polos) es todo el plano complejo, con algunas excepciones.
  • La ROC de una secuencia (estrictamente) anticausal (con valores nulos en semieje n-positivo) es el interior de una circunferencia.
  • La ROC de una secuencia (estrictamente) causal (con valores nulos en semieje n-negativo) es el exterior de una circunferencia.
  • La ROC de una secuencia bilateral (combinación de causal o estrictamente no causal) puede ser:
    • Una corona circular (si radio parte causal menor que radio parte anticausal)
    • No existir (si radio parte causal mayor que radio parte anticausal y no hay intersección)
Ejemplos

null

null

Fuentes:

  1. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab
  2. Oppenheim – Señales y Sistemas
  3. Análisis de Sistemas Lineales Asistido con Scilab – Un Enfoque desde la Ingeniería Eléctrica.
  4. Procesamiento de señales
  5. 1. Z_TRANSFORMADA_20_tt
  6. Senales y Sistemas – Shaum

Te puede interesar:

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com