Análisis de sistemas de control, Función de Transferencia, Transformada de Laplace

Expansión en fracciones parciales – Solución y(t) a partir de la función de transferencia – ejemplo

Hallar la solución y(t) a partir de la función de transferencia Y(s)/U(s) para una entrada escalón:null

Para hallar y(t) utilizaremos el método de expansión en fracciones parciales. El primer paso es presentar a Y(s)/U(s) en su forma factorizada:

null

La expansión en fracciones parciales es como sigue:

nullDónde:nullPor lo tanto:

null

Para calcular k21 primero derivamos:

nullPor lo tanto:

nullDe esta manera, Y(s)/U(s) se puede escribir como:

null

Al aplicar la antitransformada a la ecuación anterior, obtenemos que:

null

En consecuencia, y(t) para una entrada escalón es:

null

2. Graficar y(t) en Matlab y explicar a partir de la gráfica la estabilidad del sistema.

Para graficar y(t) para una entrada escalón unitario utilizamos la función de transferencia y el siguiente comando en Matlab:

>> sys=tf([1 3 7],[1 6 9 4]);

>> step(sys)

Así obtenemos:

null

En la gráfica anterior podemos ver claramente que el estado final del sistema es estable, ya que el valor de la salida y(t) se estabiliza en:

null

El valor final, o valor en estado estable, para y(t), y el tiempo de establecimiento en t=5.76 s, se pueden comprobar en la gráfica siguiente:

null

Además se le puede preguntar a la cónsola de Matlab si el sistema es estable mediante el siguiente comando (el número 1 significa verdadero):

>> isstable(sys)

ans = 1

SIGUIENTE:

ADEMÁS:

Escrito por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – Twitter: @dademuch

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto:  Caracas, Quito, Guayaquil, España: Tlf. +34633129287.

WhatsApp: +34 633129287

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Análisis de sistemas de control, Matemática aplicada - Appd Math, Transformada de Laplace

Transformada de Laplace del Pulso Rectangular

Considere la función pulso:

null

Donde A y t0 son constantes.

Esta función pulso puede considerarse una función escalón U(t) de altura A, que empieza en t=0, sobreimpuesta por un escalón U(t-to)  de altura –A, que empieza en  t=t0, es decir:

null

En este caso, la transformada de f(t) se obtiene mediante:

null

Aplicando la tabla para transformadas de Laplace (anexo) obtenemos:

null

Por lo tanto, la transformada de Laplace la función pulso es:

null

Para el pulso rectangular, simplemente debemos considerar que:

null

Esta función pulso rectangular de ancho t0 puede considerarse una función escalón U(t) de altura A, que empieza en t=0, y es luego anulada (no sobreimpuesta como el caso anterior) por un escalón U(t-to)  de altura –A, que empieza en  t=t0, es decir:

null

Por lo tanto, la transformada de Laplace la función pulso rectangular es:

null

Con la ecuación (2) en la mano podemos adaptar este resultado a situaciones particulares. Suponga el caso de un pulso rectangular como el mostrado en la siguiente Figura:

null

Al aplicar el mismo procedimiento vemos que:

null

Por lo tanto, la transformada de Laplace la función de la Figura es como en la ecuación (3):

null

ANEXO

null

Referencia:

  • Ingeniería de control moderna (Ogata)

SIGUIENTE: Graficar el pulso rectangular en Matlab

Te puede interesar también:

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Caracas, Quito, Guayaquil, Jaén. +34633129287

WhatsApp:  +34633129287   

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Señales y Sistemas, Transformada de Laplace

Ejemplo de antitransformada de Laplace

Para determinar la transformada inversa de Laplace (o antitransformada) podemos identificar la señal que corresponde en la tabla 1:

null
Tabla 1.

¿Cómo calculamos la antitransformada de una función racional que no aparece en la tabla? Descompondremos la transformada como combinación lineal de términos (descomposición en fracciones simples), cada uno de los cuales aparezca en la tabla 1. En el caso de que en las fracciones simples aparezcan polos complejos, se recomienda aplicar el siguiente procedimiento, en el cual se utiliza la fórmula de Euler para el coseno:

null

Ejemplo

Un ejemplo de F(s) con raíces complejas en el denominador es:

null

Descomponemos en fracciones simples:

null

Calculamos el valor de cada constante k:

null

null

null

null

Sustituimos estos valores en X(s) y aplicamos la antitransformada utilizando la línea en rojo de la Tabla 1, la exponencial. Factorizamos hasta donde sea posible:

null

Debido a que:nullObtenemos:

null

Por tanto:

null

Contacto a través de:

  • WhatsApp: +34 633129287
  • dademuchconnection@gmail.com

Te brindo toda la asesoría que necesites!! … Prof. Larry. Se hacen trabajos, ejercicios, clases online, talleres, laboratorios, Academic Paper, Tesis, Monografías.

Resuelvo problemas y ejercicios en dos horas…atención inmediata!!..

Referencias:

  1. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab
  2. Oppenheim – Señales y Sistemas
  3. Análisis de Sistemas Lineales Asistido con Scilab – Un Enfoque desde la Ingeniería Eléctrica.
  4. Amplificador Operacional
  5. CIRCUITO TRANSFORMADO DE LAPLACE
  6. DINAMICA CIRCUITOS
  7. INTRODUCCION A LAS SENALES Y SISTEMAS
  8. RESPUESTA EN FRECUENCIA
  9. TRANSFORMACION DE LAPLACE
  10. Control Systems Engineering, Nise

Puedes consultar también:

Elaborado por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – Twitter: @dademuch

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Jaén – España: Tlf. 633129287

Caracas, Quito, Guayaquil, Lima, México, Bogotá, Cochabamba, Santiago.

WhatsApp: +34 633129287

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Matemática aplicada - Appd Math, Señales y Sistemas, Sistemas LDCID, Transformada de Laplace

La antitransformada de Laplace

Para determinar la transformada inversa de Laplace podemos identificar la señal que corresponde a una señal exponencial, por ejemplo, en la siguiente tabla:

null

¿Cómo calculamos la antitransformada de una función racional que no aparece en la tabla? Descomponiendo la transformada como combinación lineal de términos, método conocido como Descomposición en fracciones simples. Suponga que tenemos una función con la siguiente estructura:

null

Los términos z y p son conocidos como ceros y polos de X(s), respectivamente.

1. En el caso de nm (función racional propia) y siendo los n polos simples, la descomposición que se puede hacer es de la forma:

null

Siendo k1, k2, …., kn, los residuos asociados  a cada polo. De esta forma reconocemos cada término como la transformada de una señal exponencial de la forma:

null

El residuo ki se puede evaluar mediante el siguiente algoritmo:

null

2. Si el polo p es complejo, irá acompañado de un polo complejo p*:

null

El residuo de estos polos será también complejo conjugado. Las antitranformadas de estos polos se combinan generando una sinusoide amortiguada:

null

Para una mejor discusión de este caso, ver: Ejemplo de antitransformada de Laplace

Ejemplo 1

null

null

3. Si n=m, es decir, la transformada es una función racional impropia, antes de descomponer en fracciones simples haremos la división:

null

Ejemplo 2

null

SIGUIENTE:

Referencias:

  1. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab
  2. Oppenheim – Señales y Sistemas
  3. Análisis de Sistemas Lineales Asistido con Scilab – Un Enfoque desde la Ingeniería Eléctrica.
  4. Amplificador Operacional
  5. CIRCUITO TRANSFORMADO DE LAPLACE
  6. DINAMICA CIRCUITOS
  7. INTRODUCCION A LAS SENALES Y SISTEMAS
  8. RESPUESTA EN FRECUENCIA
  9. TRANSFORMACION DE LAPLACE
  10. Control Systems Engineering, Nise

Puedes consultar también:

Atención: 

Si lo que Usted necesita es resolver con urgencia un problema: 

Atención:

Si lo que Usted necesita es determinar La Función de Transferencia de un Sistema..Le entregamos la respuesta en dos horas o menos, dependiendo de la complejidad. En digital. Póngase en contacto con nosotros, respuesta inmediata, resolvemos y entregamos la Función de Transferencia de sistemas masa-resorte-amortiguador, eléctricos, electromecánicos, electromotriz, nivel de líquido, térmico, híbridos, rotacional, no lineales, etc.. Opcional, Representación en Variables de Estado. Opcional, Entrevista por Skype para explicar la solución.

WhatsApp +34633129287, email: dademuchconnection@gmail.com.

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Caracas, Quito, Guayaquil, Cuenca, España. +34633129287

WhatsApp:  +34633129287   

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Matemática aplicada - Appd Math, Señales y Sistemas, Sin categoría, Transformada de Laplace

Ejemplo 1: Transformada de Laplace de una función exponencial – Matlab

En general, La Transformada de Laplace de una función x(t) es:

Considere la señal exponencial x(t):

Donde a es un número real cualquiera y  u(t) es la función escalón unitario. La Transformada de Laplace de x(t) es:

Para evaluar el lado derecho es necesario determinar:

Este límite existe si solo si:

Por tanto:

Y:

La región de convergencia de la transformada X(s) es el conjunto de todos los números complejos tales que Re{s}>-a (Parte real de s es mayor que menos a). Nota: Dos señales distintas pueden tener la misma expresión algebraica cuando se le aplica la transformada de Laplace. Por tanto, cuando se especifica la transformada de Laplace de una señal, se requiere tanto la expresión algebraica como el intervalo de valores s para el cual esta expresión es válida. Lo correcto es expresar el resultado anterior de la siguiente manera: 

Observar que en el caso de que a=0, x(t) es simplemente la función escalón unitario, y por tanto se obtiene el importante resultado:

Cálculo de la Transformada de Laplace en Matlab 

Continuando con el caso x(t):

Symbolic Math Toolbox de Matlab calcula la Transformada de Laplace mediante el siguiente comando:

>> syms x a t
>> x=exp(-a*t);
>> X=laplace(x)

X =

1/(a + s)

De igual manera podemos calcular Laplace para la función escalón unitario mediante:

>> x=sym(1);
>> X=laplace(x)

X =

1/s

Teniendo la Transformada de Laplace X(s) podemos aplicar la antitransformada para obtener su equivalente en el dominio del tiempo:

>> X=1/(a + s)

>> x=ilaplace(X)

x =

exp(-a*t)

Por poner un caso más complicado, considere el siguiente ejemplo:

>> syms X s x
>> X=(s+2)/(s^3+4*s^2+3*s);

>> x=ilaplace(X)

x =

2/3 – exp(-3*t)/6 – exp(-t)/2

Además puedo graficar este resultado mediante:

>> ezplot(x,[0,10])

Referencias:

  1. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab
  2. Oppenheim – Señales y Sistemas

ANTERIOR: La Transformada de Laplace

Siguiente:

Te puede interesar:

  1. Ejemplo 1 – Función Transferencia de Sistema masa-resorte-amortiguador
  2. Ejemplo 1 – Función de Transferencia de Sistema Electromecánico
  3. Ejemplo 1 – Función de transferencia de un sistema de nivel de líquidos

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Matemática aplicada - Appd Math, Señales y Sistemas, Transformada de Laplace

La Transformada de Laplace – La ROC – Definición y ejemplos.

La Transformada de Laplace tiene la importante tarea de caracterizar las señales analógicas en el dominio de la frecuencia, y representar los sistemas analógicos mediante la función de transferencia.

La Transformada de Laplace X(s) es la Transformada Continua de Fourier después de multiplicarla por una señal exponencial real decreciente. Es por ello que se considera una generalización de la Transformada de Fourier. La notación y la ecuación utilizadas para determinar la Transformada de Laplace son las siguientes:

Es decir, Laplace adapta la Transformada de Fourier para que pueda ser aplicada a un conjunto más amplios de señales para las cuáles no existe la Transformada de Fourier.

Bajo ciertas condiciones iniciales, La Transformada de Laplace nos permite visualizar el efecto que un sistema LTI (causal, lineal e invariante en el tiempo) tiene sobre cualquier señal de entrada a dicho sistema.

La Transformada de Laplace a partir de la Transformada de Fourier

Dada una señal de tiempo continuo x(t) se define la Transformada de Fourier X(ω) de x(t) como:

La ecuación (1) genera las componentes de frecuencia que forman la señal x(t). Para algunas señales de uso común en la ingeniería, esta integral no existe. Para resolver este inconveniente, se añade un factor de convergencia exponencial  e^-σt a la integral de la ecuación (1), donde sigma (σ) es un número real. De esa manera obtenemos:

La cual puede escribirse como:

Para ser más prácticos, hacemos:

Así podemos escribir la ecuación (3) como:

La ecuación (4) es conocida como La Transformada de Laplace de una señal general x(t).

La transformada de Laplace convierte las funciones expresadas en término de la variable real t  en funciones de una variable completamente diferente, la variable compleja s. Nos mueve desde el dominio del tiempo a lo que a menudo se denomina el dominio de frecuencia.

La Transformada de Laplace comparte las propiedades algebraicas de La Transformada de Fourier: transforman una señal en el tiempo en la suma de varias señales en frecuencia. De allí su enorme utilidad para determinar, por ejemplo, la salida de un sistema a partir de la ecuación diferencial que describe la dinámica de dicho sistema, aplicando La transformada de Laplace y el conjunto de propiedades que se definen a continuación.

Por otra parte, no es necesario calcular la integral de la ecuación (4) en la mayoría de los casos de interés científico ya que se dispone de tablas para determinar la Transformada de Laplace de dichos casos.

Ejemplo 1: La Transformada de Laplace de una función exponencial

Considere la señal x(t):

Donde a es un número real cualquiera y  u(t) es la función escalón unitario. Aplicando la ecuación (4), La Transformada de Laplace de x(t) es:

Para evaluar el lado derecho es necesario determinar:

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-13.png

Donde Re{s}>-a es la región de convergencia de la transformada X(s). Sobre la región de convergencia hablamos a continuación. Entre las múltiples ventajas que tiene esta forma de representar la señal x(t), resalta el hecho de que podemos simular dicha señal mediante un simple programa escrito en Matlab, Octave, Scilab, entre otros. En el caso de Matlab, se cuenta con una herramienta muy poderosa: Control Toolbox. La simpleza del siguiente script para graficar la señal x(t) se extiende a señales y sistemas mucho más complicados. Supongamos que en la ecuación anterior, a=3, lo que significa que la señal tiene un polo en s= -3. Entonces:

>> X=tf([1],[1 3]);
>> impulse(X);
>> title(‘Señal x(t)=(e^-3t)*u(t)’)

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-46.png

Si en vez de una señal, tenemos una función de transferencia, podemos simular la respuesta del sistema para entradas típicas: el impulso, el escalón o la rampa. Para ver ejemplos recomiendo ver:

Región de Convergencia (ROC)

Sea una señal analógica x(t) y su transformada de Laplace X(s). Se denomina región de convergencia (ROC, por su denominación en inglés) de la transformada de Laplace de x(t) a los valores de s para los cuales X(s) está definida; es decir, al conjunto de valores de s para los que converge la integral de la ecuación de análisis de la transformada de Laplace aplicada a x(t).

Por tanto, y en primer lugar, nunca es correcto afirmar que <<la transformada de Laplace de x(t) es X(s)>>, sino que <<la transformada de Laplace de x(t) es X(s) con una ROC  R>>:

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-14.png

Donde R es la ROC de X(s).

En segundo lugar, y muy importante, la convergencia de la ecuación de análisis de la transformada de Laplace depende siempre de x(t) y de Re{s}, pero nunca de Im{s}, puesto que es el módulo de las señales implicadas en la integral lo que determina si dicha integral converge o no y, como también sabemos, el módulo de una exponencial compleja de la forma La imagen tiene un atributo ALT vacío; su nombre de archivo es image-15.png es siempre igual a 1.

Vemos, por tanto, que la ROC de X(s) vendrá siempre determinada por Re{s}. Por tanto, X(s) existirá para algunos valores de Re{s} y no existirá para otros. Cuáles serán estos valores dependerá de x(t).

En general, la ROC se representa gráficamente sobre el plano complejo (el plano s). Así pues, si x(t) es de longitud finita y absolutamente integrable, la ROC de X(s) es todo el plano s:

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-12.png

Nota: Dos señales distintas pueden tener la misma expresión algebraica cuando se le aplica la transformada de Laplace. Por tanto, cuando se especifica la transformada de Laplace de una señal, se requiere tanto la expresión algebraica como el intervalo de valores s para el cual esta expresión es válida. Para más información ver la guía: La transformada de Laplace

Hay que tener en cuenta los siguientes conceptos siempre que se calcula una Transformada de Laplace:

  • Que un cero sea un punto en que la expresión de la transformada sea igual a cero no quiere decir que los ceros de una transformada pertenezcan a su ROC;
  • Muy posiblemente, habrá uno o más polos situados en las rectas frontera que delimitan la ROC. En todo caso, es seguro que nunca habrá polos en el interior de la ROC, puesto que, por definición, un polo es un punto en que la expresión de la transformada tiende a infinito (es decir, en que la transformada no converge);
  • En general, una vez calculada la transformada, conviene siempre comprobar si los valores particulares s=0 y s=±∞ pertenecen o no pertenecen (típicamente por ser polos) a la ROC.

Veamos como se obtiene la ROC del ejemplo 1.

Ejemplo 1: La ROC de la Transformada de Laplace de una función exponencial

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-23.png

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-24.png

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-25.png

Observar que en el caso de que a=0, x(t) es simplemente la función escalón unitario, y por tanto se obtiene el importante resultado:

Para realizar este cálculo mediante Matlab ver: Ejemplo 1: Transformada de Laplace de una función exponencial – Matlab

Relación entre la ROC y la gráfica de polos y ceros

El diagrama de polos y ceros de la Transformada de Laplace X(s) de una función x(t) cualquiera, se construye según los principios siguientes:

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-27.png

El diagrama de polos y ceros de la Transformada de Laplace X(s) de una función x(t) cualquiera, está íntimamente ligado a la ROC de la de X(s).

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-26.png

Al respecto:

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-22.png

Propiedades de la Transformada de Laplace

La Transformada de Laplace satisface un número de propiedades útiles en una gran variedad de aplicaciones. Las siguientes propiedades fundamentales permiten calcular sin necesidad de calcular la integral de la ecuación (4), la Transformada de Laplace de la mayoría de situaciones de interés para la ingeniería. Daremos algunos ejemplos de aplicación:

  1. Linealidad. La Transformada de Laplace es una operación lineal, por tanto:

Ejemplo:

  1. Desplazamiento en el tiempo por la derecha. Para cualquier número real positivo c:

Ejemplo: sea x(t) la función pulso rectangular en términos de la función escalón:

  1. Escalamiento en el tiempo. Para cualquier número real positivo a:

Ejemplo: sea x(t) la función escalón escalada en el tiempo:

  1. Multiplicación por una potencia de t. Para cualquier número entero positivo N:

Ejemplo: sea x(t) la función rampa unitaria:      5. Derivación en el dominio del tiempo.

La propiedad de derivación en el dominio del tiempo de la Transformada de Laplace es de suma importancia en el campo de la ingeniería ya que permite determinar la respuesta de un sistema LTI, o señal de salida y(t), a una entrada al sistema, o señal de excitación. Una vez determinada la Transformada de Laplace de la ecuación diferencial que representa la dinámica del sistema, se obtiene la expresión para la salida Y(s) y se aplica anti-transformada de Laplace. Pero existe una herramienta poderosa para observar el comportamiento de la salida en el dominio del tiempo. Veamos como funciona La Función de Transferencia de un sistema LTI.

Resumen de transformadas de importancia

Transformada de la exponencial

null

Transformada del coseno

null

Transformada del seno

null

Transformada de la rampa

null

Transformada de la rampa amortiguada

null

Transformada del coseno amortiguado

null

Transformada del seno amortiguado

null

Transformada del Delta de Dirac

null

A tabla siguiente ofrece un resumen del resto de las propiedades, junto con las ya mencionadas:

Ejemplos

null

Comparación entre la Transformada de Laplace y la Transformada de Fourier

A menudo se argumenta que la Transformada de Laplace es una herramienta excesivamente teórica y poco intuitiva, ya que implica una integración en el plano complejo y convierte una señal de variable real (el tiempo continuo) en una transformada de variable compleja (la variable s). Es decir, para representar la misma información es necesario utilizar dos variables en el dominio de Laplace, la parte real de s y la parte imaginaria de s, en lugar de solo una, tal y como se hace en el dominio temporal. A primera vista, no hay una razón evidente que justifique la necesidad de utilizar dos variables y ello hace que surjan alternativas para comprimir la redundancia que contiene la Transformada de Laplace y volverla a reducir a una sola dimensión. Una de estas alternativas se basa en la función exponencial est, que, como ya sabemos, presenta la propiedad de ser una autofunción de los sistemas LIT analógicos. Es decir, al excitar la entrada de un sistema analógico LIT de respuesta impulsional ℎ(𝑡) con la señal 𝑥(𝑡)= est, el sistema presenta una señal 𝑦(𝑡) a su salida dada por:

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-52.png

Dónde H(s)  es la función de transferencia del sistema. El resultado anterior muestra cómo la señal exponencial que hay en la entrada vuelve a aparecer en la salida acompañada de un factor de escala, dado por la función de transferencia, el cual resume el comportamiento del sistema en función de la variable compleja s.

De entre todas las posibles señales exponenciales, hay una de ellas que es de especial interés para nosotros y que no es otra que la señal exponencial compleja: esto es, e jωt, en donde se ha llevado a cambio el cambio de variable s=𝒋ω . Este cambio es interesante porque la señal exponencial compleja tiene un significado físico más tangible, al poder ser interpretada como un fasor en el plano complejo rotando a una velocidad angular constante ω, cuya proyección en los ejes real e imaginario da lugar a las funciones cos(ω𝒕) y sen(ω𝒕), respectivamente. Estas señales co/sinusoidales son fácilmente generables en un laboratorio y corresponden, haciendo un símil acústico, a tonos de frecuencia pura.

Esto hace que, de todo el plano complejo definido por la variable de Laplace s, en la práctica nos interese restringirnos al caso s=𝒋ω. Esta particularización no solo hace más intuitivo el análisis en el dominio transformado a partir del uso de exponenciales complejas, sino que, además, reduce la Transformada de Laplace a una nueva transformada de una sola variable, ω. Para más, ver: La Transformada de Fourier 

Referencias:

  1. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab
  2. Oppenheim – Señales y Sistemas
  3. Análisis de Sistemas Lineales Asistido con Scilab – Un Enfoque desde la Ingeniería Eléctrica.
  4. TRANSFORMACION DE LAPLACE
  5. CIRCUITO TRANSFORMADO DE LAPLACE
  6. Transform Lap – Diagram Bloq
  7. Ingeniería de control moderna – Ogata – 5a edición
Anexos

Tabla 1

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-17.png

Tabla 2

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-18.png

Tabla 3

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-19.png

Tabla 4

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-20.png

SIGUIENTE:

Te puede interesar:

  1. Ejemplo 1 – Función Transferencia de Sistema masa-resorte-amortiguador
  2. Ejemplo 1 – Función de Transferencia de Sistema Electromecánico
  3. Ejemplo 1 – Función de transferencia de un sistema de nivel de líquidos
Atención: 

Si lo que Usted necesita es resolver con urgencia un problema: 

Atención:

Si lo que Usted necesita es determinar La Función de Transferencia de un Sistema..Le entregamos la respuesta en digital. Póngase en contacto con nosotros, respuesta inmediata, resolvemos y entregamos la Función de Transferencia de sistemas masa-resorte-amortiguador, eléctricos, electromecánicos, electromotriz, nivel de líquido, térmico, híbridos, rotacional, no lineales, etc.. Opcional, Representación en Variables de Estado

WhatsApp +34633129287, email: dademuchconnection@gmail.com.

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Jaén. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Dinámica de sistemas, Ingeniería Mecánica, Transformada de Laplace

Función Transferencia de sistema masa-resorte-amortiguador – Ejemplo 2

Hallar la Función de Transferencia del sistema masa-resorte-amortiguador que se muestra a continuación:
  1. Control Systems Engineering, Nise, p 101

Desarrollamos diagrama de fuerzas a cada unidad de masa, aplicando transformada de Laplace a cada fuerza por separado debido a la propiedad de superposición. Para la Masa 1 el diagrama de cuerpo libre es el siguiente:

Para la Masa 2 el diagrama de cuerpo libre es:

Para la Masa 3 el diagrama de cuerpo libre es:

La dinámica del sistema (ecuaciones de movimiento) es:

Supongamos que nuestra intención es hallar X3(s)/F(s). Primero vamos a hallar el determinante de la matriz mediante el siguiente comando en matlab:
>> s=sym(‘s’); >> A=[4*s^2+4*s+8 -4 -2*s;-4 5*s^2+3*s+4 -3*s;-2*s -3*s 5*s^2+5*s+5]; >> delta=det(A)
delta =100*s^6 + 260*s^5 + 544*s^4 + 652*s^3 + 484*s^2 + 280*s + 80 Luego:
>> Us=sym(‘Us’); >> B=[4*s^2+4*s+8 -4 0;-4 5*s^2+3*s+4 Us;-2*s -3*s 0]; >> CX3=det(B)
CX3 =12*Us*s^3 + 12*Us*s^2 + 32*Us*s Entonces:De donde: null Te puede interesar:

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Jaén.

WhatsApp:  +34633129287

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Dinámica de sistemas, Física Aplicada, Ingeniería Mecánica, Transformada de Laplace

Función Transferencia de sistema masa-resorte-amortiguador – Ejemplo 1

Obtener la Función de Transferencia X1(s)/U(s) del sistema mecánico de la Figura 3-83 Ejercicio B318, Modern_Control_Engineering, Ogata 4t p 149.

null

Desarrollamos diagrama de fuerzas a cada unidad de masa, aplicando transformada de Laplace a cada fuerza por separado debido a la propiedad de superposición. Para la Masa 1 el diagrama de cuerpo libre es el siguiente (el análisis debido a cada movimiento X(s) se hace por separado para mayor claridad): null Para la Masa 2 el diagrama de cuerpo libre es: null La dinámica del sistema (ecuaciones de movimiento) es:

Así, aplicando álgebra lineal obtenemos la Función de Transferencia X2(s)/U(s) como:

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Jaén.

WhatsApp:  +34633129287

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com