Señales y Sistemas, Transformada de Fourier

Serie de Fourier exponencial compleja – ejemplos

Las transformaciones de la Serie de Fourier y la Transformada de Fourier convierten las señales en el dominio del tiempo en representaciones en el dominio de la frecuencia (o espectrales). El análisis de Fourier es esencial para describir ciertos tipos de sistemas y sus propiedades en el dominio de la frecuencia.

Representación en serie de Fourier de señales periódicas

Una señal x(t) de tiempo continuo es periódica si existe un valor positivo T distinto de cero para el cual se cumple que:

null

Para toda t. Dos ejemplos clásicos son la señal sinusoidal real y la exponencial compleja:

null

Representación en serie de Fourier exponencial compleja

La representación de la serie de Fourier exponencial compleja de una señal periódica con período fundamental To está dada por:

null

Para calcular los coeficientes ck se utilizan los intervalos 0 hasta To ó To /2 hasta To /2  para la integración. Al establecer k=0, obtenemos:

null

Lo cual indica que el coeficiente c0 es igual al valor promedio de x(t) sobre un período.

Ejemplos: 

Determine la representación de la serie de Fourier exponencial compleja para cada una de las siguientes señales:

  1. null

La fórmula de Euler establece que:nullPor tanto:

null

De donde:

null

  1. null

null

null

3. null

null

null

null

  1. null

La suma de dos señales periódicas con  períodos T1 y T2, es periódica sólo si la razón de sus períodos respectivos se puede expresar como un número racional:

null

Entonces, el período fundamental es el mínimo común múltiplo de T1 y T2, está dado por la ecuación:nullEn el ejemplo 4:

null

null

null

null

5. null

Por medio de la identidad trigonométrica podemos escribir que:

null

x1(t) es periódica, con período arbitrario, y x2(t)  es periódica con período :

En construcción…

Fuentes:

  1. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab
  2. Análisis de sistemas lineales asistido con Scilab, Ebert Brea.
  3. Analisis_de_Sistemas_Lineales
  4. Oppenheim – Señales y Sistemas

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Valladolid, Quito, Guayaquil, Jaén, Villafranca de Ordizia. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Señales y Sistemas, Transformada de Fourier

Transformada de Fourier de señales importantes – Matlab (Gráfica) – Ejemplos

  • Consideramos ahora la señal exponencial:

null

Donde b es una constante real, y U(t) es un escalón unitario. Tomar en cuenta que x(t)= U(t) cuando b=0. Para cualquier valor de b, la transformada de Fourier X(ω) de x(t) está dada por:

null

Debido a que:

null

La ecuación (1) queda expresada como:

null

Es decir:

null

Obtenemos:

null

null

La gráfica de x(ω) se llama Espectro Continuo de Amplitud de x(t), y la gráfica de xθ(ω) se llama Espectro Continuo de Fase de x(t):

null

null

Ambas gráficas pueden generarse mediante el siguiente comando en Matlab:

>> w=-50:0.2:50;
>> b=10;
>> X=1./(b+j*w);
>> subplot(211), plot (w,abs(X));%gráfica de magnitud de X
>> subplot(212), plot (w,angle(X));%gráfica del ángulo de X

null

Este resultado concuerda con los textos que señalan que la gráfica de módulo y de fase de la Transformada de Fourier de la función compleja exponencial e-atU(t) para a>0 real, tiene la forma siguiente:

null

Fuentes:

  1. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab
  2. Análisis de sistemas lineales asistido con Scilab, Ebert Brea.
  3. Analisis_de_Sistemas_Lineales
  4. Oppenheim – Señales y Sistemas

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Jaén. 

WhatsApp:  +34633129287  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Matemática aplicada - Appd Math, Señales y Sistemas, Transformada de Fourier

The Fourier Transform – Definition and properties.

The Fourier Transform is a valuable instrument to analyze non-periodic functions. In this way, it complements the Fourier Series, which allows analyzing systems where periodic functions are involved.

That is, through the Fourier Series we can represent a periodic signal in terms of its sinusoidal components, each component with a particular frequency. The Fourier Transform allows you to do the same with non-periodic signals.

Definition

Fourier reasoned that an aperiodic signal can be considered as a periodic signal with an infinite period. More precisely, in the Fourier Series representation of a periodic signal, as the period increases, the fundamental frequency decreases and the harmonically related components become closer to the frequency. As the period becomes infinite, the frequency components form a continuum and the sum of the Fourier series becomes an integral.

Let f be a real function defined in the continuous domain, say f(t) defined in the t domain. Then, The Fourier Transform (FT) is defined as:

null

It is said that a signal f(t) has a Fourier Transform if the integral of equation (1) converges (that is, it exists). The integral converges if f(t) “behaves well” and is fully integrable; this last condition means that:

null

All real signals behave well, and therefore satisfy the previous condition. That is, most of the real signals have FT. However, the following is an example of a signal that does not have FT:

null

The signal of equation (3) is well known as a CD signal or constant signal. And it has no FT because it is not a real signal, that is, no signal that is different from zero all the time can be physically possible. If we substitute this signal in equation (1) we could verify that this integral does not converge just by observing that the area under the constant signal is infinite, so that integral does not have a finite value. Later, however, we will show that a constant signal does have FT in a generalized sense.

The Fourier Transform Pair

We can define two integrals called the Fourier Transform pair:

null

For the TF of f(t) to exist, it must be fulfilled that:

null

F(ω) is the transform of the spectrum of f(t). From here we see that f(t) is being analyzed in a finite number of frequency components with infinitesimal amplitude equal to:

null

Fourier Transform Considerations

1. In general F(ω) is a complex function, which transforms a given signal into its exponential components;

2. F(ω) is called the Direct Fourier Transform of f(t), and represents the relative amplitudes of several frequency components, so F(ω) is the representation of f(t) in the frequency domain:

null

3. The time representation of f(t) specifies a function at each time value, while F(ω) specifies the relative amplitudes of the frequency components of the signal, for each frequency value.

4. Thus, F(ω) is a complex function with the following form

null

F(ω) is a complex function that can be represented graphically by the magnitude null and phase Θ(ω) versus frequency. In this way, the graph of null is called Continuous Spectrum of Amplitude of f(t), and the graph of Θ(ω) is called Continuous Spectrum of Phase of f(t). The spectrum is said to be a continuous spectrum, since both the amplitude and the phase of F(ω) are continuous functions of the frequency ω. This graphic representation of both spectra is known as the Frequency Spectrum. Note the difference between this continuous spectrum and the discrete spectrum generated by the Fourier Series

5. In many cases F(ω) is real or imaginary pure. Therefore, only one graph is needed since:

null

Fourier Transform Properties

The relationship between a signal and its Fourier Transform will be denoted as follows:

null

The following is a summary of the most prominent properties of the TF:

null

null

null

null

null

null

null

Sources:

  1. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab
  2. Análisis de sistemas lineales asistido con Scilab, Ebert Brea.
  3. Analisis_de_Sistemas_Lineales
  4. Oppenheim – Señales y Sistemas

Literature review by:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

WhatsApp:  +34633129287  Inmediate Attention!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Señales y Sistemas, Sistemas LDCID, Transformada de Fourier

La Transformada de Fourier – Definición y propiedades.

La Transformada de Fourier es un instrumento de gran valor para analizar las funciones no periódicas. Complementa de esta manera a la Serie de Fourier, que permite analizar sistemas donde están involucradas las funciones periódicas.

Es decir, mediante la Serie de Fourier podemos representar una señal periódica en términos de sus componentes sinusoidales, cada componente con una frecuencia en particular. La Transformada de Fourier permite hacer esto mismo con señales no periódicas.

Definición

Fourier razonó que una señal aperiódica puede considerarse como una señal periódica con un periodo infinito. De manera más precisa, en la representación en Serie de Fourier de una señal periódica, conforme el período se incrementa, la frecuencia fundamental disminuye y las componentes relacionadas armónicamente se hacen más cercanas a la frecuencia. A medida que el periodo se hace infinito, las componentes de frecuencia forman un continuo y la suma de la serie de Fourier se convierte en una integral.

Sea f una función real definida en el dominio continuo, dígase f(t) definida en el dominio t. Entonces, la Transformada de Fourier (TF) se define como:

null

Se dice que una señal f(t) tiene Transformada de Fourier si la integral de la ecuación (1) converge (es decir, existe). La integral converge si f(t)  “se comporta bien” y si es completamente integrable; esta última condición significa que:

null

Todas las señales reales se comportan bien, y por tanto satisfacen la condición anterior. Es decir, la mayoría de las señales reales tiene TF. Sin embargo, el siguiente es un ejemplo de una señal que no tiene TF:

null

La señal de la ecuación (3) es bien conocida como señal de CD o señal constante. Y no tiene TF porque no es una señal real, es decir, ninguna señal que es diferente de cero todo el tiempo puede ser físicamente posible. Si sustituimos esta señal en la ecuación (1) podríamos comprobar que esta integral no converge sólo con observar que el área bajo la señal constante es infinita, por lo que dicha integral no tiene un valor finito. Más adelante, sin embargo, mostraremos que una señal constante si tiene TF en un sentido generalizado.

El par de Transformada de Fourier

Podemos definir dos integrales que se llaman el par de Transforma de Fourier:

null

Para que exista la TF de f(t), se debe cumplir que:

null

F(ω) es la transformada del espectro de f(t). De aquí vemos que f(t) está siendo analizada en un número finito de componentes de frecuencia con amplitud infinitesimal igual a:

null

Para ver más: La transformada de Fourier

Consideraciones sobre la Transformada de Fourier

1. En general F(ω)  es una función compleja, que transforma una señal dada en sus componentes exponenciales;

2. F(ω) se llama la Transformada de Fourier directa de f(t), y representa las amplitudes relativas de varias componentes de frecuencia, así F(ω)  es la representación de f(t) en el dominio de la frecuencia:

null

3. La representación en el tiempo de f(t) especifica una función a cada valor del tiempo, mientras que F(ω)  especifica las amplitudes relativas de las componentes de frecuencia de la señal, para cada valor de frecuencia.

4. Así, F(ω)  es una función compleja con la siguiente forma:

null

F(ω) es una función compleja que puede ser representada gráficamente por la magnitud null y la fase Θ(ω)  versus la frecuencia. De esta manera, la gráfica de null  se llama Espectro Continuo de Amplitud de f(t), y la gráfica de Θ(ω) se llama Espectro Continuo de Fase de f(t). El espectro se dice que es un espectro continuo, ya que ambos, el de amplitud y el de fase de F(ω) , son funciones continuas de la frecuencia ω. Esta representación gráfica de ambos espectros se conoce como El Espectro de Frecuencia. Notar la diferencia que existe entre este espectro continuo y el espectro discreto generado por la Serie de Fourier.

5. En muchos casos F(ω) es real o imaginario puro. Por lo cual sólo se necesita una sola gráfica ya que:

null

Ejemplo

1. La gráfica de módulo y de fase de la Transformada de Fourier de la función compleja exponencial e-atU(t) para a>0 real, tiene la forma siguiente:

null

Para la deducción de este gráfico, ver:

2. Obtenga la Transformada de Fourier de tiempo continuo de la señal x(t):

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-53.png

3. Considere la señal genérica x(t):

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-54.png

3.1 Obtenga la Transformada de Fourier de tiempo continuo de la señal y(t):

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-56.png

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-55.png

3.2 Obtenga la Transformada de Fourier de tiempo continuo de la señal y(t):

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-57.png

3.3 Obtenga la Transformada de Fourier de tiempo continuo de la señal y(t):

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-58.png

3.4 Obtenga la Transformada de Fourier de tiempo continuo de la señal y(t):

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-59.png

Propiedades de la Transformada de Fourier

La relación entre una señal y su Transformada de Fourier se denotará de la siguiente manera:null

Lo siguiente es un resumen de las propiedades más resaltantes de la TF:

null

null

null

null

null

null

null

Comparación entre la Transformada de Laplace y la Transformada de Fourier

A menudo se argumenta que la Transformada de Laplace es una herramienta excesivamente teórica y poco intuitiva, ya que implica una integración en el plano complejo y convierte una señal de variable real (el tiempo continuo) en una transformada de variable compleja (la variable s). Es decir, para representar la misma información es necesario utilizar dos variables en el dominio de Laplace, la parte real de s y la parte imaginaria de s, en lugar de solo una, tal y como se hace en el dominio temporal. A primera vista, no hay una razón evidente que justifique la necesidad de utilizar dos variables y ello hace que surjan alternativas para comprimir la redundancia que contiene la Transformada de Laplace y volverla a reducir a una sola dimensión. Una de estas alternativas se basa en la función exponencial est, que, como ya sabemos, presenta la propiedad de ser una autofunción de los sistemas LIT analógicos. Es decir, al excitar la entrada de un sistema analógico LIT de respuesta impulsional ℎ(𝑡) con la señal 𝑥(𝑡)= est, el sistema presenta una señal 𝑦(𝑡) a su salida dada por:

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-52.png

Dónde H(s)  es la función de transferencia del sistema. El resultado anterior muestra cómo la señal exponencial que hay en la entrada vuelve a aparecer en la salida acompañada de un factor de escala, dado por la función de transferencia, el cual resume el comportamiento del sistema en función de la variable compleja s.

De entre todas las posibles señales exponenciales, hay una de ellas que es de especial interés para nosotros y que no es otra que la señal exponencial compleja: esto es, e jωt, en donde se ha llevado a cambio el cambio de variable s=𝒋ω . Este cambio es interesante porque la señal exponencial compleja tiene un significado físico más tangible, al poder ser interpretada como un fasor en el plano complejo rotando a una velocidad angular constante ω, cuya proyección en los ejes real e imaginario da lugar a las funciones cos(ω𝒕) y sen(ω𝒕), respectivamente. Estas señales co/sinusoidales son fácilmente generables en un laboratorio y corresponden, haciendo un símil acústico, a tonos de frecuencia pura.

Esto hace que, de todo el plano complejo definido por la variable de Laplace s, en la práctica nos interese restringirnos al caso s=𝒋ω. Esta particularización no solo hace más intuitivo el análisis en el dominio transformado a partir del uso de exponenciales complejas, sino que, además, reduce la Transformada de Laplace a una nueva transformada de una sola variable, ω.

SIGUIENTE:

Fuentes:

  1. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab
  2. Análisis de sistemas lineales asistido con Scilab, Ebert Brea.
  3. Analisis_de_Sistemas_Lineales
  4. Oppenheim – Señales y Sistemas

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Jaén. 

WhatsApp:  +34633129287   

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com