Convolución - respuesta al impulso, Señales y Sistemas

Sumatoria de Convolución – Convolución en tiempo discreto

En general, cualquier señal discreta x[n] puede ser representada como una combinación lineal de deltas desplazadas. En general se cumple que:

La imagen tiene un atributo ALT vacío; su nombre de archivo es null-57.png

Ejemplo:

Sea la función x[n] representada por la siguiente gráfica:

La imagen tiene un atributo ALT vacío; su nombre de archivo es null-58.png

La función x[n] de la gráfica anterior puede ser representada mediante la siguiente sumatoria:

La imagen tiene un atributo ALT vacío; su nombre de archivo es null-59.png

A continuación se observa cada una de las gráficas que se suman para formar x[n]:

La imagen tiene un atributo ALT vacío; su nombre de archivo es null-60.png
Suma de convolución

En el ejemplo anterior se ve claramente la importancia de las propiedades de muestreo y selección definidas anteriormente para la función impulso unitario (El Impulso Unitario). Su importancia reside en el hecho de que x[n] se puede representar como una superposición de versiones escaladas de un conjunto muy sencillo de funciones elementales, es decir, de impulsos unitarios δ[n-k] desplazados. A partir de este simple hecho vamos a presentar ahora uno de los conceptos más importante del análisis de sistemas lineales, la idea de la sumatoria de convolución.

Decíamos antes que cualquier señal discreta x[n] puede representarse como una combinación lineal de deltas desplazadas:

La imagen tiene un atributo ALT vacío; su nombre de archivo es null-57.png

Supongamos ahora que x[n] representa toda entrada para un arbitrario Sistema A cuya salida es y[n]. Recordemos del párrafo anterior que en realidad x[n] es una suma de versiones escaladas (con peso x[k]) de impulsos unitarios δ[n-k] desplazados.

Designemos a hk[n] como la respuesta del sistema al impulso unitario desplazado δ[n-k]. Debido a que el sistema es un LTI  (cumple con la propiedad de linealidad y de invarianza en el tiempo) podemos expresar matemáticamente la salida y[n] del Sistema A como una sumatoria de las respuestas individuales del sistema a cada impulso unitarios δ[n-k] con peso x[k]:

Entonces, de acuerdo con la ecuación anterior, si conocemos la respuesta de un sistema lineal al conjunto de impulsos unitarios desplazados, podemos construir la respuesta a cualquier entrada arbitraria. Debido a que δ[n-k] es la versión desplazada de δ[n], así hk[n] es una versión desplazada de su versión en el origen h0[n]. Por lo tanto:

Por convención científica se obvia el subíndice en h0[n] y se deja simplemente como h[n]. De esta manera, la salida y[n] del Sistema A se puede expresar como:

Este importante resultado se conoce como suma de convolución, y el miembro derecho de la ecuación se conoce como convolución de las secuencias x[n] y h[n].

Para la convolución de las secuencias x[n] y h[n] se utiliza el signo *. De esta manera, la salida y[n] del Sistema A se puede expresar como:

Dónde:

La Figura siguiente presenta un resumen de los resultados obtenidos hasta ahora:

La aplicación de este resultado lo podemos ver gráficamente mediante el siguiente ejemplo.

Ejemplo:

Sean la entrada x[n] a un sistema y su repuesta al impulso h[n], tal como se especifica a continuación:

Determinar la salida y[n]  del sistema.

Respuesta:

Pasos para aplicar la sumatoria de convolución

Repetimos este importante hallazgo, la salida y[n] de cualquier sistema LTI de tiempo discreto se puede obtener mediante la convolución de la entrada x[n]  con la respuesta al impulso h[n]. Es lo que manifiesta el siguiente esquema:

La suma de convolución anterior involucra los siguientes pasos:

  1. La respuesta al impulso h[k] se invierte en el tiempo (es decir, se refleja sobre el origen) para obtener h[-k]  y posteriormente se desplaza mediante n para formar h[n-k] = h[-(k-n)], que es una función de k con parámetro n;
  2. Las dos secuencias x[k] y h[n-k] se multiplican entre sí para todos los valores de k con n fija en algún valor;
  3. El producto x[k]h[n-k] se suma sobre todas las k para producir una sola muestra de salida y[n];
  4. Los pasos 1 a 3 se repiten a medida que n varía en el intervalo de –infinito a +infinito para producir la salida completa y[n].

Ejemplo 1:

La entrada x[n] y la respuesta al impulso h[n] de un sistema LTI están dadas por:

Calcule la salida y[n] mediante:

La imagen tiene un atributo ALT vacío; su nombre de archivo es null-70.png

Respuesta:

Las secuencias para x[k] y h[n-k], y el resultado de la multiplicación y posterior suma, se observan a continuación:

Propiedades de la convolución.

Las siguientes propiedades de la suma de convolución son análogas a las de la integral de convolución:

Otras propiedades de interés son:

También la solución a cierto problema se puede determinar de manera analítica, utilizando las propiedades de la convolución señaladas anteriormente. Tal es el caso del siguiente ejemplo.

Ejemplo 2:

Ante una entrada x[n], la respuesta y[n] de un sistema LTI es:

Se conoce que la respuesta al impulso h[n] del sistema:

Determinar x[n]. Seleccionar la respuesta correcta de las siguientes alternativas:

Respuesta:

Nuestra estrategia será utilizar las siguientes propiedades:

Expresamos la respuesta al impulso en términos de deltas de Dirac desplazados:

Luego, si seleccionamos:

Entonces:

Podríamos demostrar gráficamente que la anterior ecuación coincide con la gráfica para y[n] dada en el enunciado. Por lo tanto, la opción correcta es la letra a).

Respuesta al escalón.

La respuesta y[n] al escalón u[n] de un sistema LTI de tiempo discreto cuya respuesta al impulso es h[n], se obtiene fácilmente mediante:

Notar que, de acuerdo con la ecuación anterior:

Notar la estrecha relación que tiene este resultado con el hecho demostrado en El Impulso Unitario de que:

La imagen tiene un atributo ALT vacío; su nombre de archivo es null-49.png

Es decir, podemos conocer la respuesta al impulso de un sistema LTI discreto, a partir de su respuesta a la función escalón, mediante:

La imagen tiene un atributo ALT vacío; su nombre de archivo es null-74.png

En construcción…….

Fuentes:

  1. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab
  2. Análisis de sistemas lineales asistido con Scilab, Ebert Brea.
  3. Analisis_de_Sistemas_Lineales
  4. Oppenheim – Señales y Sistemas
  5. Señales y sistemas – Shaum

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Jaén. 

WhatsApp:  +34633129287     

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Análisis de sistemas de control, Convolución - respuesta al impulso

La respuesta al impulso, la salida y la integral de Convolución de un sistema LIT

Sea T la salida de un sistema LIT (lineal e invariante en el tiempo) continuo en el tiempo, la respuesta al impulso h(t) de este sistema se define como la salida del sistema a la entrada impulso  (delta de Dirac):

null

Propiedad de muestreo del impulso

Para comprender la función de la función impulso en el análisis de señales es menester estudiar primero su propiedad de muestreo. Se puede demostrar que cualquier entrada x(t) se puede representar como:

null

La ecuación (2) es una de las aplicaciones más importantes de la función impulso. Hace posible representar cualquier función continua x(t)  en el tiempo como una sucesión continua de impulsos.

null

De esta manera, la ecuación (2) representa a x(t)  como la suma (integral) de una serie de impulsos continuos, donde la magnitud de cada impulso es igual al valor de la función en este instante (propiedad de muestreo). Se utiliza entonces la función impulso para muestrear la función x(t). Además, las propiedades de la función impulso que aparecen en la Tabla 1, serán muy utilizadas en el procesamiento de señales y el análisis de sistemas lineales:

null

TABLA 1

Respuesta de un sistema a cualquier entrada

Haciendo uso de las ecuaciones (1) y (2), podemos ahora derivar una expresión para la salida de un sistema a cualquier entrada arbitraria. Puesto que el sistema es lineal, la respuesta y(t) del sistema a cualquier entrada arbitraria x(t) puede expresarse como:

null

Ya vimos que la respuesta al impulso se define como:

null

Sustituyendo este desplazamiento en la ecuación (3) obtenemos que:

null

La ecuación (4) pone de manifiesto que, por medio de la respuesta al impulso, se puede obtener la salida y(t) de un sistema para cualquier entrada x(t). En otras palabras, la respuesta al impulso caracteriza completamente al sistema….De hecho, la función de transferencia del sistema es igual a la transformada de Laplace de la respuesta al impulso..Nota importante: Observe la redundancia de decir que, si x(t) es un impulso unitario, entonces, para un sistema LIT, y(t) = h(t).

La ecuación (4) es conocida como la integral de convolución o la integral de superposición para un sistema LIT en términos de su respuesta al impulso, y también se puede representar simbólicamente como:

null

null

Respuesta al impulso a partir de la respuesta al escalón unitario

Nota importante: Existen varios métodos para obtener la respuesta al impulso de un sistema. Por su simplicidad, uno de los que se utiliza con mayor frecuencia es obtener dicha respuesta a partir de la respuesta al escalón unitario u(t), ya que, como reza la propiedad 4 de la Tabla 1:

nullEjemplo:

Supóngase que la respuesta de un sistema al escalón unitario (step), es yu(t):

nullEntonces h(t):

null

Operación de la integral de convolución

Antes de aplicar la ecuación (4) para obtener la salida de un sistema mediante la integral de convolución, se debe decidir que es más fácil obtener….h(t-τ) ó x(t-τ)  . Porque:

null

Una vez decidido sobre este asunto (supóngase que se decide por la primera opción), la integral de convolución involucra cuatro pasos:

  1. La respuesta al impulso h(τ) se invierte en el tiempo (se refleja en el origen) para obtener h(-τ). Después se desplaza en t para formar h(t-τ), la cual es una función de τ  con parámetro t;
  2. Las señales x(τ) y h(t-τ) se multiplican entre sí para todos los valores de  con la t fija para algún valor;
  3. El producto x(τ)h(t-τ) se integra sobre todas las τ para producir un único valor de salida y(t);
  4. Se repiten los pasos 1 al 3 a medida que t varía en el intervalo de [-∞,+∞], para producir la salida completa y(t).

Ejemplo:

  1. Las funciones de respuesta al impulso h(t) y la entrada x(t) de un sistema, están dadas por:

null

Determinar:

  1. La salida y(t) por ambos métodos:

Solución:

null

  1. Las funciones de respuesta al impulso h(t) y la entrada x(t) de un sistema, están dadas por:

null

Determinar:

  1. La salida y(t):

nullSolución:

null

  1. Las funciones de respuesta al impulso h(t) y la entrada x(t) de un sistema, están dadas por:

null

Determinar:

  1. La salida y(t) por métodos analíticos y por método gráfico:

Solución:

Podemos expresar las funciones de la siguiente manera:

null

Analíticamente:

null

Gráficamente:

null

null

  1. Considere un sistema LIT cuya respuesta a la entrada escalón está dada por:

null

Determinar la salida y(t) para la siguiente entrada:

nullSolución:

Podemos expresar x(t) como:

null

Puesto que el sistema es lineal e invariante en el tiempo, la salida y(t)  se obtiene directamente como:

null

null

5. La señal x1(t) de la figura se hace pasar a través de un sistema LTI cuya respuesta al impulso es h(t).

Convolución en matlab

¿Cuál debe ser el valor del parámetro ‘a’ para que el valor máximo de la salida del sistema esté en el instante t=3? Dibuje el resultado de la convolución para dicho valor

null

null

null

Para ver la respuesta en matlab visitar: Convolución de un señal con su respuesta al impulso – Ejemplo en Matlab

6. Para las siguientes respuestas al impulso, determinar la salida.

null

Fuente:

  • Nota 7 Respuesta Impulsiva Sistema Continuo
  • Shaum – Señales y Sistemas

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com