Matemática aplicada - Appd Math, Señales y Sistemas

Convolución de una señal LTI con su respuesta al impulso – Ejemplo con Matlab

La señal x1(t) de la figura se hace pasar a través de un sistema LTI cuya respuesta al impulso es h(t).

Convolución en matlab

  1. a) ¿Cuál debe ser el valor del parámetro ‘a’ para que el valor máximo de la salida del sistema esté en el instante t=3? Dibuje el resultado de la convolución para dicho valor
  2. b) ¿Y para que el valor máximo esté en t=6? Dibuje el resultado en este nuevo caso.

La salida y1(t) puede ser determinada mediante la siguiente convolución:

null

La función x1(t) es un pulso triangular de 4 segundos de ancho, 2 unidades de altura, centrado en t=2s, que puede representarse de la manera siguiente:

null

La gráfica para x1(t) en el tiempo 0≤t<4 en Matlab se obtiene mediante:

>> t=0:0.1:4;

>> x1=2*tripuls(t-2,4);

>> plot(t,x1)

null

Por su parte, h(t) es un pulso rectangular unitario de ancho a. El objetivo es darle diferentes valores al parámetro a para aplicar la ecuación (1) y determinar el valor de a para el cual el valor máximo de la salida y1(t) se localiza en el instante t=3s.

La gráfica de h(t) para a=1, que denominaremos h1(t), se obtiene mediante:

>> t=0:0.1:4;

>> h1=rectpuls(t,2);

>> plot(t,h1)

null

La convolución de x1(t) y h1(t), genera la salida y11(t)  para a=1. Continuando con los comandos en Matlab utilizados para generar las gráficas anteriores, y11(t)  se puede obtener en mediante:

>> y11=conv(x1,h1)

>> t=0:0.1:8;

>> plot(t,y11)

null

En la gráfica anterior se observa que el valor máximo de y1(t)   está aproximadamente en t=2,5s.

La gráfica para h2(t), es decir a=2, se obtiene mediante:

>> t=0:0.1:4;

>> h2=rectpuls(t,4);

>> plot(t,h2)

null

La convolución de x1(t) y h2(t), genera la salida y12(t)  para a=2. y12(t) y su gráfica, se obtiene mediante:

>> y12=conv(x1,h2);

>> t=0:0.1:8;

>> plot(t,y12)

null

En la gráfica anterior se observa que el valor máximo de y1(t)   está aproximadamente en t=3s.

La gráfica para h3(t), es decir a=3, se obtiene mediante:

>> t=0:0.1:4;

>> h3=rectpuls(t,6);

>> plot(t,h3)

null

La convolución de x1(t) y h3(t), genera la salida y13(t)  para a=3. y13(t) y su gráfica, se obtiene mediante:

>> y13=conv(x1,h3);

>> t=0:0.1:8;

>> plot(t,y13)

null

En la gráfica anterior se observa que el valor máximo de y1(t)   está aproximadamente en t=3.5s.

La gráfica para h4(t), es decir a=4, se obtiene mediante:

>> t=0:0.1:4;

>> h4=rectpuls(t,8);

>> plot(t,h4)

null

La convolución de x1(t) y h4(t), genera la salida y14(t)  para a=4. y14(t) y su gráfica, se obtiene mediante:

>> y14=conv(x1,h4);

>> t=0:0.1:8;

>> plot(t,y14)

null

En la gráfica anterior se observa que el valor máximo de y1(t)   está aproximadamente en t=4s.

Conclusión:

El valor máximo de la salida y1(t) se localiza en el instante t=3s cuando el valor de a es 2 (a=2).

Utilizando el mismo procedimiento, podemos determinar que asignando un valor para a=8, el valor máximo de la salida y1(t) se localiza en el instante t=6s.

null

t=0:0.1:8;

h5=rectpuls(t,16);

plot(t,h5)

y15=conv(x1,h5);

t=0:0.1:12;

plot(t,y15)

Puedes consultar también:

Atención: 

Si lo que Usted necesita es resolver con urgencia un problema: 

Atención:

Si lo que Usted necesita es determinar La Función de Transferencia de un Sistema..Le entregamos la respuesta en dos horas o menos, dependiendo de la complejidad. En digital. Póngase en contacto con nosotros, respuesta inmediata, resolvemos y entregamos la Función de Transferencia de sistemas masa-resorte-amortiguador, eléctricos, electromecánicos, electromotriz, nivel de líquido, térmico, híbridos, rotacional, no lineales, etc.. Opcional, Representación en Variables de Estado. Opcional, Entrevista por Skype para explicar la solución.

WhatsApp +34633129287, email: dademuchconnection@gmail.com.

 

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Matemática aplicada - Appd Math

Series de Taylor y Laurent – Ampliaciones

La siguiente es una guía PDF sobre Series de Taylor y Laurent – Ampliaciones:Series de Taylor y de Laurent – Ampliaciones

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Matemática aplicada - Appd Math

Modulación – definición

El proceso de adaptación de la información de banda base a paso banda es lo que se conoce como modulación.

Dependiendo del medio de transmisión, el envío de la señal puede ser más eficiente realizando una transmisión paso banda. Por ejemplo, el espectro radio está dividido en múltiples bandas frecuenciales, por lo que se deberá adecuar la información al canal frecuencial en el cual se va a transmitir. Ese proceso de adaptación de la información de banda base a paso banda es lo que se conoce como modulación.

Dicho proceso involucra dos señales: la señal moduladora (señal en banda base) y la señal portadora (señal paso banda de alta frecuencia). Todas las modulaciones se basan en variar los parámetros de la señal portadora de acuerdo a la moduladora. Esa variación será la que condicione el tipo de modulación: lineal o angular, por citar las dos modulaciones vistas en la asignatura. Una vez transmitida la señal, se irá desplazando a lo largo del medio hasta llegar a su destino. Remarcar la no idealidad del canal, por lo cual la señal perderá calidad debido al ruido del mismo. Finalmente, una vez recibida la señal se realiza el proceso inverso, conocido como demodulación. En dicho proceso, se realizará la conversión de paso banda a banda base.

Remarcar que el concepto de modulación es más amplio al de desplazamiento frecuencial. Si bien en un desplazamiento frecuencial únicamente se traslada la información en banda base a una determinada frecuencia paso banda, en la modulación, además de ese desplazamiento, se realizarán variaciones en esa señal paso banda de acuerdo a la señal moduladora. Esa variación podrá ser lineal o angular, dando lugar a dos grandes familias de modulaciones. A lo largo de la práctica se estudiarán ambas modulaciones en detalle. Para ello, se generará la señal en banda base y se le aplicará la modulación correspondiente; se emulará el envío de la misma en un canal agregándole ruido; y finalmente se demodulará para obtener la señal banda base original. De esta manera se abordará la problemática real inherente a este tipo de sistemas y se comprenderá la importancia del tratamiento estadístico como herramienta de procesado.

Fuentes:

Practica3_Modulaciones

Fundamentos de Comunicación y Transmisión

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV Caracas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Matemática aplicada - Appd Math, Sin categoría

Proceso aleatorio y estocástico

Un proceso ergódico debe ser estacionario, dado que sería imposible estimar una f.d.p. variante en el tiempo a partir de una única realización.

Dado que la idea subyacente del procesado de señales estocásticas es conocer algunos detalles acerca de la f.d.p. que define dicho proceso, un problema importante para el procesado de señales estocásticas es cómo estimar dicha f.d.p. a partir de una única realización de dicho proceso. En otras palabras, cuando tenemos datos de un proceso aleatorio sólo hacen referencia a una realización temporal de dicho proceso. Sin embargo, existen infinidad de posibles realizaciones como esa. Debido a que no podemos estudiarlas todas en la práctica, tenemos que estimar o aproximar el valor del proceso aleatorio global a la información que poseemos en nuestros datos.

La suposición que nos permite tomar esta aproximación se llama ergodicidad, que establece que “los promedios temporales convergen al valor que se pretende estimar del conjunto de todas las realizaciones”. Por ello, un proceso ergódico debe ser estacionario, dado que sería imposible estimar una f.d.p. variante en el tiempo a partir de una única realización.

Para el caso de un proceso aleatorio ergódico, se tendrá que cumplir que las características estadísticas de los promedios temporales sean iguales a sus correspondientes promedios de conjunto. Es decir, si al analizar las propiedades de media y función de autocorrelación (en la práctica se considera suficiente con estas dos) de cada una de las funciones muestrales coinciden con las propiedades de los promedios de conjunto (para un tiempo dado), hablaremos de un proceso aleatorio ergódico y de esta forma podremos conocer las características del proceso global a partir de una única realización del proceso aleatorio.

De la teoría sabemos que para que un proceso aleatorio sea estacionario en sentido amplio, se debe cumplir:

  • La media del conjunto debe ser independiente del tiempo:

null

  • La función de autocorrelación de conjunto depende sólo de la diferencia de tiempos de observación:

null

Para el caso de un proceso aleatorio ergódico, se tendrá que cumplir que las características estadísticas de los promedios temporales sean iguales a sus correspondientes promedios de conjunto. Es decir, si al analizar las propiedades de media y función de autocorrelación (en la práctica se considera suficiente con estas dos) de cada una de las funciones muestrales coinciden con las propiedades de los promedios de conjunto (para un tiempo dado), hablaremos de un proceso aleatorio ergódico y de esta forma podremos conocer las características del proceso global a partir de una única realización del proceso aleatorio.

Fuentes:

Practica 2. Procesos aleatorias, propiedades estadísticas, estacionariedad y ergodicidad

Fundamentos de Comunicación y Transmisión

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV Caracas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Matemática aplicada - Appd Math

Histograma y función de densidad de probabilidad – Pasos para obtener la PDF

La función de densidad de probabilidad (PDF) de la variable aleatoria resultante de observar el proceso en un cierto instante se podrá estimar contando el número de veces a lo largo del intervalo de observación en que la señal toma cada valor de amplitud.

Para caracterizar estadísticamente una señal aleatoria supuesta, procedente de un proceso ergódico, se pueden observar sus valores observados a lo largo del tiempo. Así, los promediados temporales (media, correlación) permiten estimar los correspondientes promediados del proceso (del conjunto de funciones muestrales).

Además, La función de densidad de probabilidad (PDF) de la variable aleatoria resultante de observar el proceso en un cierto instante se podrá estimar contando el número de veces a lo largo del intervalo de observación en que la señal toma cada valor de amplitud. La gráfica resultante de dividir el rango de amplitudes en distintos intervalos y contar el número de muestras de la señal que caen en cada intervalo se denomina histograma, y cuando el intervalo de observación sea muy grande, será una buena estimación de la PDF una vez normalizado.

Mtemáticamente, la PDF (f.d.p.) es:

null

Donde Fx(x) representa la probabilidad acumulativa de que una variable aleatoria x no supere un valor particular de la misma x. La probabilidad de que la variable aleatoria caiga en una región específica del espacio de posibilidades estará dada por la integral de la f.d.p. de esta variable entre uno y otro límite de dicha región:

null

null

Los pasos para la obtención de la PDF son:

  1. Obtención del histograma: se divide el rango de valores de la señal en intervalos (bins) y se cuenta el número de muestras de la señal que se obtiene en cada intervalo de observación.
  2. Promedio del histograma y normalización: se promedian los histogramas correspondientes a distintos intervalos de observación, y el resultado, una vez integrado y normalizado a un valor máximo de 1, es una buena estimación de la función de densidad de probabilidad.

Las señales con las que un ingeniero de Telecomunicación trabaja en la práctica no son, la mayor parte de las veces, deterministas. Por ejemplo, una señal de voz no puede ser descrita por una ecuación, ya que los parámetros que la caracterizan cambian constantemente con el tiempo. Sin embargo, esta señal tiene ciertas características que la definen y distinguen de otras. De hecho, casi todas las señales que se manejan en comunicaciones y en otros muchos campos de la ingeniería y de la ciencia son de naturaleza estocástica (también llamada aleatoria).

La definición de una señal aleatoria se realiza por medio de sus propiedades estadísticas, como son: su función densidad de probabilidad, su función densidad de probabilidad conjunta, su media, su función de autocorrelación, etc.

Fuentes:

Práctica 1. Instrumentación, simulación y radio

Fundamentos de Comunicación y Transmisión

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV Caracas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Matemática aplicada - Appd Math, Transformada Z

La Transformada Z – Análisis de sistemas discretos.

La Transformada Z (TZ) es una herramienta que proporciona un método para caracterizar las señales y los sistemas de tiempo discreto por medio de polos y ceros en el dominio Z transformado.

X(z), La Transformada Z, es el equivalente de la Transformada de Laplace para tiempo discreto. Puesto que z es una variable compleja, el dominio Z es un plano complejo.

La transformada Z directa X(z) de una señal x[n] se define como la serie de potencias:

null

Dónde z es el número complejo:

null

La ecuación (1) mapea la señal definida en el dominio del tiempo discreto, a la función definida en el dominio Z, lo que se denota como:

null

La notación para la relación entre ambos dominios es:

null

Como la ecuación (1) es la suma de una serie geométrica, solo existe para aquellos valores del plano complejo para los que la suma no diverge. Esto nos lleva al concepto de región de convergencia (ROC – Region of Convergence).

La ROC de una transformada X(z) es el conjunto de todos los valores de la variable compleja z para los que X(z) es finita:

null

El par transformado no es único hasta que no se añade la información relativa a la ROC. Por ello, las tablas de pares z-transformados incluyen una tercera columna con su información de la ROC.

A continuación los pares transformados para las señales discretas más importantes en el área del procesamiento de señales:

null

null

Ejemplos:

null

Propiedades de la ROC.
  • La Transformada X(z) junto con la ROC definen de forma inequívoca la secuencia x[n], es decir, sin la información de la ROC, existe indeterminación en el cálculo de la antitransformada.
  • La ROC de cualquier secuencia tiene simetría circular en torno al origen sobre el plano Z, porque la convergencia sólo depende de .
  • La ROC no puede contener polos porque, por definición, la evaluación de X(z) sobre un polo produce divergencia.
  • La ROC de secuencias de duración finita (sin polos) es todo el plano complejo, con algunas excepciones.
  • La ROC de una secuencia (estrictamente) anticausal (con valores nulos en semieje n-positivo) es el interior de una circunferencia.
  • La ROC de una secuencia (estrictamente) causal (con valores nulos en semieje n-negativo) es el exterior de una circunferencia.
  • La ROC de una secuencia bilateral (combinación de causal o estrictamente no causal) puede ser:
    • Una corona circular (si radio parte causal menor que radio parte anticausal)
    • No existir (si radio parte causal mayor que radio parte anticausal y no hay intersección)
Ejemplos

null

null

Fuentes:

  1. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab
  2. Oppenheim – Señales y Sistemas
  3. Análisis de Sistemas Lineales Asistido con Scilab – Un Enfoque desde la Ingeniería Eléctrica.
  4. Procesamiento de señales
  5. 1. Z_TRANSFORMADA_20_tt
  6. Senales y Sistemas – Shaum

Te puede interesar:

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Matemática aplicada - Appd Math, Señales y Sistemas

Método gráfico de convolución – tiempo continuo

Para calcular la convolución entre x(t) y v(t) mostrada en la ecuación (5), es de gran utilidad graficar las funciones de la integral de convolución.

null

El principal procedimiento es graficar x(τ) y v(t-τ) como funciones de τ. Luego, determinar donde se traslapan y determinar la forma analítica de x(τ)v(t-τ), e integrar este producto.

Cuando x(t) o v(t) está parcialmente definida, la forma analítica del producto cambia, dependiendo del intervalo de tiempo t. Para determinar la forma apropiada del producto y de los límites de integración, debemos desplazar la gráfica de v(t-τ) de izquierda a derecha, para ver cómo el traslape entre  x(τ) y v(t-τ) se modifica.

Los pasos para desarrollar el método gráfico de la convolución son los siguientes. Simultáneamente, aplicamos el procedimiento al siguiente caso:

null

Paso 1. Graficar  x(τ) y v(-τ) como funciones de . La función v(-τ) es igual a v(τ) reflejada sobre el eje vertical. Ambas gráficas aparecen en la siguiente figura:

null

Paso 2. Graficar v(t-τ) para un valor cualquiera de t, tal como t<0. Observar que v(t-τ) es igual que v(τ) desplazada de tal forma que el origen de la gráfica se encuentra en τ=t.

Paso 3. De inmediato, se determina el producto x(τ)v(t-τ) y la forma de la curva que produce este producto en la gráfica debido al solapamiento. Esto se hace punto a punto respecto a τ. Se desplaza  hacia la derecha hasta que el producto x(τ)v(t-τ) sea cero o hasta que cambie la expresión analítica (la forma de la curva en la gráfica).

null

Paso 4. Suponga que t=a. Continuar desplazando  hacia la derecha, hasta pasar t=a. Determinar el intervalo de tiempo  para el cual el producto x(τ)v(t-τ) tiene la misma forma analítica. Integrar el producto x(τ)v(t-τ) como una función de τ, con los límites de integración τ=a hasta τ=t. El resultado es la expresión para x(t)*v(t)  entre a≤t<b.

null

Al aplicar estos criterios al ejemplo obtenemos:

null

Paso 5. Desplazar v(t-τ) hacia la derecha hasta pasar t=b. Determinar el siguiente intervalo de tiempo b≤t<c, para el cual el producto x(τ)v(t-τ) tenga la misma forma analítica. Integre el producto x(τ)v(t-τ) como una función de τ.

null

Al aplicar estos criterios al ejemplo obtenemos:

null

La siguiente figura muestra el resultado de la convolución de x(t)*v(t):

null

Método de convolución con Matlab

La señal x1(t) de la figura se hace pasar a través de un sistema LTI cuya respuesta al impulso es h(t).

Convolución en matlab

  1. a) ¿Cuál debe ser el valor del parámetro ‘a’ para que el valor máximo de la salida del sistema esté en el instante t=3? Dibuje el resultado de la convolución para dicho valor
  2. b) ¿Y para que el valor máximo esté en t=6? Dibuje el resultado en este nuevo caso.

Para ver solución visitar: Convolución de un señal con su respuesta al impulso – Ejemplo en Matlab

Fuentes:

  1. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab
  2. Oppenheim – Señales y Sistemas
  3. Análisis de Sistemas Lineales Asistido con Scilab – Un Enfoque desde la Ingeniería Eléctrica.
  4. Amplificador Operacional
  5. CIRCUITO TRANSFORMADO DE LAPLACE
  6. DINAMICA CIRCUITOS
  7. INTRODUCCION A LAS SENALES Y SISTEMAS
  8. RESPUESTA EN FRECUENCIA
  9. TRANSFORMACION DE LAPLACE
  10. Control Systems Engineering, Nise

 

Puedes consultar también:

Atención: 

Si lo que Usted necesita es resolver con urgencia un problema: 

Atención:

Si lo que Usted necesita es determinar La Función de Transferencia de un Sistema..Le entregamos la respuesta en dos horas o menos, dependiendo de la complejidad. En digital. Póngase en contacto con nosotros, respuesta inmediata, resolvemos y entregamos la Función de Transferencia de sistemas masa-resorte-amortiguador, eléctricos, electromecánicos, electromotriz, nivel de líquido, térmico, híbridos, rotacional, no lineales, etc.. Opcional, Representación en Variables de Estado. Opcional, Entrevista por Skype para explicar la solución.

WhatsApp +34633129287, email: dademuchconnection@gmail.com.

 

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Matemática aplicada - Appd Math, Señales y Sistemas

Convolución en el tiempo continuo – ejemplos.

Dadas dos señales continuas cualquiera x(t) y v(t), la convolución de x(t) y v(t) está definida por:

null

Para la convolución:

null

Cualquier entrada x(t) se puede representar como:

null

A partir de la ecuación (2) podemos pensar intuitivamente en cualquier señal x(t) como una “suma” de impulsos ponderados desplazados, donde el peso en el impulso δ(t-τ) es x(τ). Con esta interpretación, la ecuación (1) representa la superposición de las respuestas a cada una de estas entradas, y por linealidad, el peso en la respuesta hτ(t) al impulso desplazado también es x(τ). Definimos hτ(t)=h(t)  como la respuesta al impulso unitario .En este caso, la ecuación (1) se vuelve:

null

La ecuación (3) es conocida como la integral de convolución o la integral de superposición para un sistema LTI (lineal e invariante en el tiempo) en términos de su respuesta al impulso unitario. La convolución de las señales x(t) y h(t) se representa simbólicamente mediante:

null

Un sistema LTI está absolutamente caracterizado por su respuesta al impulso unitario .

Dadas dos señales continuas cualquiera x(t) y v(t), la convolución de x(t) y v(t) está definida por:

null

La operación de convolución es conmutativa, por lo que:

null

Si las dos señales x(t) y v(t) son cero para toda t<0:

null

Sea h(t)  la respuesta al impulso de un sistema LTI cuya salida es y(t).  Si es la entrada a dicho sistema, y x(t)=0 para t<0, entonces la salida y(t) la viene dada por:

null

Observe la redundancia de decir que, si x(t) es un impulso unitario, entonces, para un sistema LTI, y(t) = h(t).

Método gráfico de la convolución.

Para calcular la convolución entre x(t) y v(t) mostrada en la ecuación (5), es de gran utilidad graficar las funciones de la integral de convolución. El principal procedimiento es graficar x(τ) y v(t-τ) como funciones de τ. Luego, determinar donde se traslapan y determinar la forma analítica de x(τ)v(t-τ), e integrar este producto.

Cuando x(t) o v(t) está parcialmente definida, la forma analítica del producto cambia, dependiendo del intervalo de tiempo t. Para determinar la forma apropiada del producto y de los límites de integración, debemos desplazar la gráfica de v(t-τ) de izquierda a derecha, para ver cómo el traslape entre  x(τ) y v(t-τ) se modifica.

Los pasos para desarrollar el método gráfico de la convolución son los siguientes. Simultáneamente, aplicamos el procedimiento al siguiente caso:

null

Paso 1. Graficar  x(τ) y v(-τ) como funciones de . La función v(-τ) es igual a v(τ) reflejada sobre el eje vertical. Ambas gráficas aparecen en la siguiente figura:

null

Paso 2. Graficar v(t-τ) para un valor cualquiera de t, tal como t<0. Observar que v(t-τ) es igual que v(τ) desplazada de tal forma que el origen de la gráfica se encuentra en τ=t.

Paso 3. De inmediato, se determina el producto x(τ)v(t-τ) y la forma de la curva que produce este producto en la gráfica debido al solapamiento. Esto se hace punto a punto respecto a τ. Se desplaza  hacia la derecha hasta que el producto x(τ)v(t-τ) sea cero o hasta que cambie la expresión analítica (la forma de la curva en la gráfica).

null

Paso 4. Suponga que t=a. Continuar desplazando  hacia la derecha, hasta pasar t=a. Determinar el intervalo de tiempo  para el cual el producto x(τ)v(t-τ) tiene la misma forma analítica. Integrar el producto x(τ)v(t-τ) como una función de τ, con los límites de integración τ=a hasta τ=t. El resultado es la expresión para x(t)*v(t)  entre a≤t<b.

null

Al aplicar estos criterios al ejemplo obtenemos:

null

Paso 5. Desplazar v(t-τ) hacia la derecha hasta pasar t=b. Determinar el siguiente intervalo de tiempo b≤t<c, para el cual el producto x(τ)v(t-τ) tenga la misma forma analítica. Integre el producto x(τ)v(t-τ) como una función de τ.

null

Al aplicar estos criterios al ejemplo obtenemos:

null

La siguiente figura muestra el resultado de la convolución de x(t)*v(t):

null

Método de convolución con Matlab.

La señal x1(t) de la figura se hace pasar a través de un sistema LTI cuya respuesta al impulso es h(t).

Convolución en matlab

  1. a) ¿Cuál debe ser el valor del parámetro ‘a’ para que el valor máximo de la salida del sistema esté en el instante t=3? Dibuje el resultado de la convolución para dicho valor
  2. b) ¿Y para que el valor máximo esté en t=6? Dibuje el resultado en este nuevo caso.

Para ver la respuesta visitar: Convolución de un señal con su respuesta al impulso – Ejemplo en Matlab

Fuentes:

  1. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab
  2. Oppenheim – Señales y Sistemas
  3. Análisis de Sistemas Lineales Asistido con Scilab – Un Enfoque desde la Ingeniería Eléctrica.
  4. Amplificador Operacional
  5. CIRCUITO TRANSFORMADO DE LAPLACE
  6. DINAMICA CIRCUITOS
  7. INTRODUCCION A LAS SENALES Y SISTEMAS
  8. RESPUESTA EN FRECUENCIA
  9. TRANSFORMACION DE LAPLACE
  10. Control Systems Engineering, Nise

 

Puedes consultar también:

Atención: 

Si lo que Usted necesita es resolver con urgencia un problema: 

Atención:

Si lo que Usted necesita es determinar La Función de Transferencia de un Sistema..Le entregamos la respuesta en dos horas o menos, dependiendo de la complejidad. En digital. Póngase en contacto con nosotros, respuesta inmediata, resolvemos y entregamos la Función de Transferencia de sistemas masa-resorte-amortiguador, eléctricos, electromecánicos, electromotriz, nivel de líquido, térmico, híbridos, rotacional, no lineales, etc.. Opcional, Representación en Variables de Estado. Opcional, Entrevista por Skype para explicar la solución.

WhatsApp +34633129287, email: dademuchconnection@gmail.com.

 

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Señales y Sistemas, Transformada de Fourier

Transformada de Fourier de señales importantes – Matlab (Gráfica) – Ejemplos

  • Consideramos ahora la señal exponencial:

null

Donde b es una constante real, y U(t) es un escalón unitario. Tomar en cuenta que x(t)= U(t) cuando b=0. Para cualquier valor de b, la transformada de Fourier X(ω) de x(t) está dada por:

null

Debido a que:

null

La ecuación (1) queda expresada como:

null

Es decir:

null

Obtenemos:

null

null

La gráfica de  se llama Espectro Continuo de Amplitud de x(t), y la gráfica de  se llama Espectro Continuo de Fase de x(t):

null

null

Ambas gráficas pueden generarse mediante el siguiente comando en Matlab:

>> w=0:0.2:50;
>> b=10;
>> X=1./(b+j*w);
>> subplot(211), plot (w,abs(X));%gráfica de magnitud de X
>> subplot(212), plot (w,angle(X));%gráfica del ángulo de X

null

Fuentes:

  1. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab
  2. Análisis de sistemas lineales asistido con Scilab, Ebert Brea.
  3. Analisis_de_Sistemas_Lineales
  4. Oppenheim – Señales y Sistemas

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Matemática aplicada - Appd Math, Señales y Sistemas, Transformada de Fourier

The Fourier Transform – Definition and properties.

The Fourier Transform is a valuable instrument to analyze non-periodic functions. In this way, it complements the Fourier Series, which allows analyzing systems where periodic functions are involved.

That is, through the Fourier Series we can represent a periodic signal in terms of its sinusoidal components, each component with a particular frequency. The Fourier Transform allows you to do the same with non-periodic signals.

Definition

Fourier reasoned that an aperiodic signal can be considered as a periodic signal with an infinite period. More precisely, in the Fourier Series representation of a periodic signal, as the period increases, the fundamental frequency decreases and the harmonically related components become closer to the frequency. As the period becomes infinite, the frequency components form a continuum and the sum of the Fourier series becomes an integral.

Let f be a real function defined in the continuous domain, say f(t) defined in the t domain. Then, The Fourier Transform (FT) is defined as:

null

It is said that a signal f(t) has a Fourier Transform if the integral of equation (1) converges (that is, it exists). The integral converges if f(t) “behaves well” and is fully integrable; this last condition means that:

null

All real signals behave well, and therefore satisfy the previous condition. That is, most of the real signals have FT. However, the following is an example of a signal that does not have FT:

null

The signal of equation (3) is well known as a CD signal or constant signal. And it has no FT because it is not a real signal, that is, no signal that is different from zero all the time can be physically possible. If we substitute this signal in equation (1) we could verify that this integral does not converge just by observing that the area under the constant signal is infinite, so that integral does not have a finite value. Later, however, we will show that a constant signal does have FT in a generalized sense.

The Fourier Transform Pair

We can define two integrals called the Fourier Transform pair:

null

For the TF of f(t) to exist, it must be fulfilled that:

null

F(ω) is the transform of the spectrum of f(t). From here we see that f(t) is being analyzed in a finite number of frequency components with infinitesimal amplitude equal to:

null

Fourier Transform Considerations

1. In general F(ω) is a complex function, which transforms a given signal into its exponential components;

2. F(ω) is called the Direct Fourier Transform of f(t), and represents the relative amplitudes of several frequency components, so F(ω) is the representation of f(t) in the frequency domain:

null

3. The time representation of f(t) specifies a function at each time value, while F(ω) specifies the relative amplitudes of the frequency components of the signal, for each frequency value.

4. Thus, F(ω) is a complex function with the following form

null

F(ω) is a complex function that can be represented graphically by the magnitude null and phase Θ(ω) versus frequency. In this way, the graph of null is called Continuous Spectrum of Amplitude of f(t), and the graph of Θ(ω) is called Continuous Spectrum of Phase of f(t). The spectrum is said to be a continuous spectrum, since both the amplitude and the phase of F(ω) are continuous functions of the frequency ω. This graphic representation of both spectra is known as the Frequency Spectrum. Note the difference between this continuous spectrum and the discrete spectrum generated by the Fourier Series

5. In many cases F(ω) is real or imaginary pure. Therefore, only one graph is needed since:

null

Fourier Transform Properties

The relationship between a signal and its Fourier Transform will be denoted as follows:

null

The following is a summary of the most prominent properties of the TF:

null

null

null

null

null

null

null

Sources:

  1. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab
  2. Análisis de sistemas lineales asistido con Scilab, Ebert Brea.
  3. Analisis_de_Sistemas_Lineales
  4. Oppenheim – Señales y Sistemas

Literature review by:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

WhatsApp:  +34633129287  Inmediate Attention!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com