Análisis de circuitos eléctricos, Diagramas de bloques, Función de Transferencia, Ingeniería Eléctrica, Sin categoría

Problemas de Modelo de sistemas eléctricos en variable de estado, función de transferencia, diagrama de bloques, simulación en matlab-simulink

Modelo de sistemas eléctricos en Matlab. Para los circuitos de las Figuras 1, 2, 3 y 4, determinar:

  1. Modelo en espacio de estados
  2. Diagrama de bloques a partir del modelo en espacio de estados
  3. Función de transferencia a partir del modelo en espacio de estados
  4. Simular en Matlab – Simulink, según los siguientes estilos de simulación:
    • Diagrama de bloques
    • El modelo en espacio de estados
    • Las funciones de transferencia
    • Interpretar los resultados.

null

null

null

null

Respuesta:

Para adquirir esta solución se facilita pago a través de Paypal o con TC.

Problemas resueltos – Modelos de sistemas eléctricos

Observación: Pago por cuatro (4) ejercicios. Solicitar la entrega en PDF al whatsapp +34633129287

€37,00

Fuente:

  1. Introduccion-al-analisis-de-circuitos-robert-l-boylestad,
  2. Análisis de Redes – Van Valkenburg,
  3. Fundamentos_de_circuitos_electricos_5ta
  4. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Análisis de circuitos eléctricos, Función de Transferencia, Ingeniería Eléctrica

Examen resuelto -Función de transferencia de red eléctrica, diagrama de bloques/flujo, Mason.

Considerando el circuito de la Figura 1 determinar:

a) Las ecuaciones del sistema utilizando la transformada de Laplace; b) Bloques equivalentes a cada ecuación; c) Diagrama de Bloques del Circuito Completo; d) Diagrama de flujo; e) Función de Transferencia Vc3(s)/V(s):

null

Figura 1

Respuesta:

Te recomiendo además: Función de transferencia de sistema eléctrico – Problemas resueltos – Catálogo 5

SIGUIENTE:

Fuente:

  1. Introduccion-al-analisis-de-circuitos-robert-l-boylestad,
  2. Análisis de Redes – Van Valkenburg,
  3. Fundamentos_de_circuitos_electricos_5ta
  4. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Análisis de sistemas de control, Variables de estado

Ejercicio de variables de estado – circuito eléctrico

Calcular el modelo en variables de estado del circuito de la Figura 1, considerando las variables de estado x1=i y x2=Vs, la señal de entrada u=Vi, la salida y=Vs.

null

Figura 1

Determinar la representación en el espacio de estados considerando las siguientes variables de estado:

null

La entrada y la salida del sistema son respectivamente:

nullRespuesta:

null

Derivamos las siguientes ecuaciones a partir de las variables de estado definidas:

null

Despejamos en las ecuaciones 1 y 2 el equivalente a las ecuaciones anteriores, y sustituimos las variables de estado:

null

Por otra parte, la salida es:

null

En definitiva, utilizando las ecuaciones (3),(4) y (5) la representación en espacio de estados del sistema es:

null

Escrito por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Jaén – España: Tlf. 633129287

Caracas, Quito, Guayaquil, Lima, México, Bogotá, Cochabamba, Santiago.

WhatsApp: +34 633129287

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

 

 

Análisis de sistemas de control, Convolución - respuesta al impulso

La respuesta al impulso, la salida y la integral de Convolución de un sistema LIT

Sea T la salida de un sistema LIT (lineal e invariante en el tiempo) continuo en el tiempo, la respuesta al impulso h(t) de este sistema se define como la salida del sistema a la entrada impulso  (delta de Dirac):

null

Propiedad de muestreo del impulso

Para comprender la función de la función impulso en el análisis de señales es menester estudiar primero su propiedad de muestreo. Se puede demostrar que cualquier entrada x(t) se puede representar como:

null

La ecuación (2) es una de las aplicaciones más importantes de la función impulso. Hace posible representar cualquier función continua x(t)  en el tiempo como una sucesión continua de impulsos.

null

De esta manera, la ecuación (2) representa a x(t)  como la suma (integral) de una serie de impulsos continuos, donde la magnitud de cada impulso es igual al valor de la función en este instante (propiedad de muestreo). Se utiliza entonces la función impulso para muestrear la función x(t). Además, las propiedades de la función impulso que aparecen en la Tabla 1, serán muy utilizadas en el procesamiento de señales y el análisis de sistemas lineales:

null

TABLA 1

Respuesta de un sistema a cualquier entrada

Haciendo uso de las ecuaciones (1) y (2), podemos ahora derivar una expresión para la salida de un sistema a cualquier entrada arbitraria. Puesto que el sistema es lineal, la respuesta y(t) del sistema a cualquier entrada arbitraria x(t) puede expresarse como:

null

Ya vimos que la respuesta al impulso se define como:

null

Sustituyendo este desplazamiento en la ecuación (3) obtenemos que:

null

La ecuación (4) pone de manifiesto que, por medio de la respuesta al impulso, se puede obtener la salida y(t) de un sistema para cualquier entrada x(t). En otras palabras, la respuesta al impulso caracteriza completamente al sistema….De hecho, la función de transferencia del sistema es igual a la transformada de Laplace de la respuesta al impulso..Nota importante: Observe la redundancia de decir que, si x(t) es un impulso unitario, entonces, para un sistema LIT, y(t) = h(t).

La ecuación (4) es conocida como la integral de convolución o la integral de superposición para un sistema LIT en términos de su respuesta al impulso, y también se puede representar simbólicamente como:

null

null

Respuesta al impulso a partir de la respuesta al escalón unitario

Nota importante: Existen varios métodos para obtener la respuesta al impulso de un sistema. Por su simplicidad, uno de los que se utiliza con mayor frecuencia es obtener dicha respuesta a partir de la respuesta al escalón unitario u(t), ya que, como reza la propiedad 4 de la Tabla 1:

nullEjemplo:

Supóngase que la respuesta de un sistema al escalón unitario (step), es yu(t):

nullEntonces h(t):

null

Operación de la integral de convolución

Antes de aplicar la ecuación (4) para obtener la salida de un sistema mediante la integral de convolución, se debe decidir que es más fácil obtener….h(t-τ) ó x(t-τ)  . Porque:

null

Una vez decidido sobre este asunto (supóngase que se decide por la primera opción), la integral de convolución involucra cuatro pasos:

  1. La respuesta al impulso h(τ) se invierte en el tiempo (se refleja en el origen) para obtener h(-τ). Después se desplaza en t para formar h(t-τ), la cual es una función de τ  con parámetro t;
  2. Las señales x(τ) y h(t-τ) se multiplican entre sí para todos los valores de  con la t fija para algún valor;
  3. El producto x(τ)h(t-τ) se integra sobre todas las τ para producir un único valor de salida y(t);
  4. Se repiten los pasos 1 al 3 a medida que t varía en el intervalo de [-∞,+∞], para producir la salida completa y(t).

Ejemplo:

  1. Las funciones de respuesta al impulso h(t) y la entrada x(t) de un sistema, están dadas por:

null

Determinar:

  1. La salida y(t) por ambos métodos:

Solución:

null

  1. Las funciones de respuesta al impulso h(t) y la entrada x(t) de un sistema, están dadas por:

null

Determinar:

  1. La salida y(t):

nullSolución:

null

  1. Las funciones de respuesta al impulso h(t) y la entrada x(t) de un sistema, están dadas por:

null

Determinar:

  1. La salida y(t) por métodos analíticos y por método gráfico:

Solución:

Podemos expresar las funciones de la siguiente manera:

null

Analíticamente:

null

Gráficamente:

null

null

  1. Considere un sistema LIT cuya respuesta a la entrada escalón está dada por:

null

Determinar la salida y(t) para la siguiente entrada:

nullSolución:

Podemos expresar x(t) como:

null

Puesto que el sistema es lineal e invariante en el tiempo, la salida y(t)  se obtiene directamente como:

null

null

5. La señal x1(t) de la figura se hace pasar a través de un sistema LTI cuya respuesta al impulso es h(t).

Convolución en matlab

¿Cuál debe ser el valor del parámetro ‘a’ para que el valor máximo de la salida del sistema esté en el instante t=3? Dibuje el resultado de la convolución para dicho valor

null

null

null

Para ver la respuesta en matlab visitar: Convolución de un señal con su respuesta al impulso – Ejemplo en Matlab

6. Para las siguientes respuestas al impulso, determinar la salida.

null

Fuente:

  • Nota 7 Respuesta Impulsiva Sistema Continuo
  • Shaum – Señales y Sistemas

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Análisis de sistemas de control, Diagrama de Bode

Respuesta forzada a una entrada exponencial utilizando el Diagrama de Bode

Si la respuesta libre (respuesta natural u homogénes) tiende a cero (circuito estrictamente estable), en régimen permanente sólo queda la componente forzada. La respuesta forzada a una excitación sinusoidal (o salida en régimen permanente sinusoidal en circuitos estrictamente estables) es la sinusoide de la entrada amplificada y desfasada, como se puede ver en la Figura 1:

null

Figura 1

Suponga un sistema con función de transferencia H(s), entrada X(s) y salida Y(s), representado mediante el  diagrama de bloques de la Figura 2:

null

Figura 2

De la Figura 2 sabemos que:

null

Entonces, ¿Cuál será entonces la respuesta forzada a una excitación exponencial? Razonamos de la siguiente manera analítica:

nullPor tanto:nullUtilizando la ecuación (1) entonces:null

Utilizando la técnica de expansión en fracciones simples vemos que:

null

Vemos en la ecuación anterior que la respuesta forzada Yf(s) es:

null

Al hacer la antitransformada de la respuesta forzada Yf(s), obtenemos que yf(t) es:

null

La ecuación (2) confirma que la respuesta forzada a una excitación sinusoidal  es la sinusoide de la entrada amplificada en H(so) (la función de transferencia evaluada en so).

¿Qué pasa si tomamos valores complejos para K y argumento imaginario puro para la exponencial?

Razonamos de la siguiente manera analítica:

null

Aplicando el mismo procedimiento obtenemos que en este caso la respuesta forzada yf(t)  es:

null

Dónde:

null

La ecuación para yf(t) confirma que la respuesta forzada a una excitación sinusoidal  es la sinusoide de la entrada amplificada en H(jω) y desfasada en <H(jω).

Estos últimos, el módulo y la fase, son los elementos de un diagrama de Bode de la función de transferencia del sistema. Por lo tanto, conociendo la función de entrada x(t) y disponiendo del diagrama de Bode de la función de transferencia de dicho sistema, podemos obtener la respuesta forzada yf(t) del sistema a la entrada x(t).

Ejemplo:

Disponiendo del siguiente Diagrama de Bode de la función de transferencia de un sistema, así como de la entrada a dicho sistema, determinar la respuesta forzada por esta entrada.

null

nullRespuesta:nullDónde:null

Ya que:nullEntonces:

nullPodemos ver en el diagrama de Bode que:

null

nullPor lo tanto:nullEs decir:null

Te puede interesar:

Fuentes:

  1. Modern_Control_Engineering, Ogata 4t
  2. Control Systems Engineering, Nise
  3. Sistemas de Control Automatico, Kuo

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

 

 

 

Diagrama de Bode

Formulario de examen resuelto – Diagrama de Bode

  1. Determinar el valor de la constante K en la función de transferencia T(jω) para obtener el diagrama de Bode de la Figura:

null

Respuesta:

null

Podemos comprobar este resultado en Matlab mediante:

>> G=tf([1 10],[1 100]);

>> sys=1.9275*G;

>> bode(sys)

null

2. En base al diagrama siguiente, indica si el sistema de control en lazo cerrado con realimentación unitaria es estable.

null

Respuesta:

Se utiliza el siguiente criterio:

null

Vemos en el diagrama de Bode el sector rodeado por las líneas negras, la ganancia es positiva mientras que la fase es negativa con un valor entre -180° y  -270°:

null

Podemos concluir que el sistema es inestable.

3. Disponiendo del siguiente Diagrama de Bode de la función de transferencia de un sistema, así como de la entrada a dicho sistema, determinar la respuesta forzada por esta entrada.

null

nullRespuesta:nullDónde:null

Ya que:nullEntonces:

nullPodemos ver en el diagrama de Bode que:

null

nullPor lo tanto:nullEs decir:null

Basado en: Respuesta forzada a una entrada exponencial utilizando el Diagrama de Bode

4. Sea el siguiente diagrama de Bode, determinar una posible función de transferencia.

null

Respuesta:

The logarithmic amplitude frequency characteristic (LAFC) of Figure 1 shown that:nullsuggesting that the transfer function of this system has a factor (jω), a zero in the origin. The slope of the logarithmic magnitude curve for this factor is n. If  n=1 , we get a slope of 20 db/dek and we get the straight line of Figure 1, approximately from ω=0.1  to ω=10, including the fact that the magnitude is zero at ω=1.

Then the LAFC shown a straight line of slope equal to zero from ω=10  to ω=100, suggesting that a subtraction of slopes have happened at ω=10. That is possible if the transfer function has a factor 1/(1+jωT1), where ω=1/T1  is the corner frequency. The factor 1/(1+jωT1)  has a slope of 20 db/dek from ω=10 and on. Thus, we get a slope equal to zero from ω=10.

Finally, the LAFC shown a straight line of slope equal to 20 db/dek  from ω=100  and on. Clearly, a new subtraction of slopes have happened at ω=100. Thus, the transfer function has a second factor 1/(1+jωT2), where ω=1/T2  is the corner frequency.

Thus, the possible transfer function is as follows:

nullWhere:

null

Replacing these values and , we get:

null

We can corroborate this result by applying the following commands in the Command Window of Matlab and matching this result to the original curve:

>> s=tf(‘s’);

>> G=1000*s/((s+10)*(s+100));

>> bode(G)

null

null

Fuentes:

  1. Modern_Control_Engineering, Ogata 4t
  2. Control Systems Engineering, Nise
  3. Sistemas de Control Automatico, Kuo

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

 

 

 

 

 

 

 

 

Análisis de sistemas de control, Estabilidad, Sin categoría

Ejemplo de análisis de estabilidad con diagrama de Nyquist

El criterio de Nyquist puede decirnos si el sistema es estable o inestable al determinar cuántos polos del sistema a lazo cerrado de la Figura 1, se encuentran en el semiplano derecho:

null

Figura 1

Diagrama de Nyquist con Matlab

Considere la siguiente función de transferencia a lazo abierto:

null

Para elaborar el Diagrama de Nyquist, podemos utilizar los siguientes comandos en el command window de Matlab:

>> s=tf(‘s’)

>> G=1/(s^2+0.8*s+1)

>> nyquist(G)

Esta línea de comandos genera la siguiente gráfica:

null

Podemos obtener información sobre puntos de interés en el diagrama de Nyquist haciendo clik una vez sobre el punto de interés en el contorno:

null

Ejemplo:

null

Step 1. Find the open-loop transfer function G(s)H(s) of the system.

Consider the closed-loop control system as follows:

null

The system characteristic equation is as follows:

null

The factor form of this characteristic equation is:

null

To determine the previous factor form:

null

Where the open-loop transfer function G(s)H(s) of the system is:

null

Step 2. Use Command Window of Matlab to draw the Nyquist Diagram, applying the following commands:

>> s=tf(‘s’);

>> G=10/(s^3+2*s^2+5*s);

>> nyquist(G);

null

null

We can see at the previous Diagram that for:

null

To reach stability, Z must be equal to zero:

null

Recalling that the poles of 1+ G(s)H(s), are the same as the poles of G(s)H(s), the open-loop system, we can determine P, the number of open-loop poles enclosed by the contour A from:

null

null

A detour around the poles on the contour is required:

null

In the Nyquist Diagram obtained for the system of Task 2, the point -1+j0 is highlighted in red:

null

We can see that N=0, so:

null

However, the Nyquist diagram intersects the real axis at -1+j0. Hence, according to the Nyquist Criteria, the system is marginally stable.

Fuentes:

  1. Modern_Control_Engineering, Ogata 4t
  2. Control Systems Engineering, Nise
  3. Sistemas de Control Automatico, Kuo

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Análisis de sistemas de control, Diagramas de bloques

Diagrama de Bloques – Problemas resueltos – Catálogo 8 – Sistema MRA y eléctrico.

Diagramas de bloques en ingeniería de control. 

En esta guía PDF  se determina el Diagrama de Bloques y la Función de Transferencia mediante la aplicación álgebra de bloques, de los ejercicios que más se utilizan en las clases de sistemas masa-resorte-amortiguador que forman parte a su vez de sistemas de control, señales y sistemas, análisis de redes eléctricas con motor DC, sistemas electrónicos en mecatrónica, etc. Es un buen recurso para aprender también a obtener  la representación en variables de estado. También aparecen ejemplos de como aplicar la misma técnica a redes eléctricas y sistemas de nivel de líquido. Una vez cancelado debes Solicitar la guía vía email – WhatsApp. Se facilita pago por PayPal, Tarjeta de crédito o débito. Puede pagar por cada problema – o por todos los problemas.

1. Obtener la función de transferencia G(s)=Y(s)/R(s)  de la Figura 1, por dos métodos: empleando técnicas de reducción por álgebra de bloques y utilizando la fórmula de Mason.

null

Diagrama de bloques – pago por un ejercicio

Función de transferencia, diagrama de bloques, álgebra de bloques. Observación: Pago por un ejercicio. Solicitar la entrega en PDF al whatsapp +34633129287

€15,00

2. Obtener la función de transferencia G(s)=C(s)/R(s)  de la Figura 2, por dos métodos: empleando técnicas de reducción por álgebra de bloques y utilizando la fórmula de Mason.

null

Diagrama de bloques – pago por un ejercicio

Función de transferencia, diagrama de bloques, álgebra de bloques. Observación: Pago por un ejercicio. Solicitar la entrega en PDF al whatsapp +34633129287

€15,00

3. Obtener la función de transferencia G(s)=C(s)/R(s)  de la Figura 3, empleando técnicas de reducción por álgebra de bloques.

null

Diagrama de bloques – pago por un ejercicio

Función de transferencia, diagrama de bloques, álgebra de bloques. Observación: Pago por un ejercicio. Solicitar la entrega en PDF al whatsapp +34633129287

€15,00

4. Determinar la función de transferencia G(s)=Y(s)/R(s)  en el siguiente diagrama de bloques.  

null

Diagrama de bloques – pago por un ejercicio

Función de transferencia, diagrama de bloques, álgebra de bloques. Observación: Pago por un ejercicio. Solicitar la entrega en PDF al whatsapp +34633129287

€15,00

5. Hallar las ecuaciones del sistema de la Figura 7 y representarlo mediante variables de estado. A partir de allí determinar el diagrama de bloques del sistema. Luego, utilizando álgebra de diagrama de bloques, Hallar la función de transferencia X(s)/U(s). Considerar a x(t) como la salida y a u(t) como la entrada. Comprobar el resultado mediante transformada de Laplace.

null

Diagrama de bloques – pago por un ejercicio

Función de transferencia, diagrama de bloques, álgebra de bloques. Observación: Pago por un ejercicio. Solicitar la entrega en PDF al whatsapp +34633129287

€15,00

6. Hallar las ecuaciones del sistema de la Figura 8. Hallar la representación matricial del sistema (variables de estado). Considere a x1(t) como la salida, y a u(t) como la entrada. Construya el diagrama de bloques del sistema y utilizando álgebra de bloques determinar la función de transferencia X1(s)/U(s).

null

Diagrama de bloques – pago por un ejercicio

Función de transferencia, diagrama de bloques, álgebra de bloques. Observación: Pago por un ejercicio. Solicitar la entrega en PDF al whatsapp +34633129287

€15,00

7. Hallar las ecuaciones del sistema de la figura 22. Determinar la función de transferencia X1(s)/U(s). Determinar el diagrama de bloques del sistema a partir de la función de transferencia obtenida.

null

Diagrama de bloques – pago por un ejercicio

Función de transferencia, diagrama de bloques, álgebra de bloques. Observación: Pago por un ejercicio. Solicitar la entrega en PDF al whatsapp +34633129287

€15,00

8. Hallar las ecuaciones del Sistema de la Figura 24. Hallar la representación en espacio de estados del sistema, considerando a Θ1(t) como la salida y a T(t) como la entrada. Hallar el diagrama de bloques del sistema y a partir de allí, mediante álgebra de bloques, determinar la función de transferencia Θ1(s)/T(s).

null

Diagrama de bloques – pago por un ejercicio

Función de transferencia, diagrama de bloques, álgebra de bloques. Observación: Pago por un ejercicio. Solicitar la entrega en PDF al whatsapp +34633129287

€15,00

9. Hallar las ecuaciones del sistema de la Figura 25. Determinar la función de transferencia X1(s)/F(s). Obtener el diagrama de bloques del sistema a partir de la función de transferencia obtenida (Explicar paso a paso). Graficar la respuesta del sistema a una entrada función escalón mediante Matlab. Considerar k1= k2= k3= 1 N/m, b1= b2= b3=1 N-s/m, m1= m2= m3=1 Kg.

null

null

Gráfica de respuesta al escalón unitario del ejercicio 5.

Diagrama de bloques – pago por un ejercicio

Función de transferencia, diagrama de bloques, álgebra de bloques. Observación: Pago por un ejercicio. Solicitar la entrega en PDF al whatsapp +34633129287

€15,00

10. Determinar las ecuaciones diferenciales que representan el modelo del sistema de la Figura 75. Utilizar el método de análisis de nodos. Hallar la función de transferencia Vo(s)/V(s). Realice la representación del sistema en diagrama de bloques a partir de la función de transferencia Vo(s)/V(s). Considerar R1=1Ω,  R2= R3=1 Ω, L=1 H, C1=C2=1 pF.

null

Diagrama de bloques – pago por un ejercicio

Función de transferencia, diagrama de bloques, álgebra de bloques. Observación: Pago por un ejercicio. Solicitar la entrega en PDF al whatsapp +34633129287

€15,00

11. Obtener la función de transferencia Vo(s)/V(s) del sistema eléctrico de la figura 75, a partir del diagrama de bloques del sistema obtenido en el problema 6, utilizando álgebra de bloques. Simular y analizar en Matlab la respuesta del sistema a una entrada escalón unitario.

Diagrama de bloques – pago por un ejercicio

Función de transferencia, diagrama de bloques, álgebra de bloques. Observación: Pago por un ejercicio. Solicitar la entrega en PDF al whatsapp +34633129287

€15,00

12. Hallar la representación en espacio de estados del Sistema mostrado en la Figura 39 suponiendo que Θ4(t) es la salida y T(t) es la entrada. Dibujar el diagrama de bloques del sistema y hallar la función de transferencia Θ4(t)/T(t). Considerar k=2 N-m/rad, b=16 N-m-s/rad, J=4  Kg-m2

null

Diagrama de bloques – pago por un ejercicio

Función de transferencia, diagrama de bloques, álgebra de bloques. Observación: Pago por un ejercicio. Solicitar la entrega en PDF al whatsapp +34633129287

€15,00

13. Hallar la función de transferencia ΘL(s)/Ei(s) del Sistema mostrado en la Figura 56. Hallar la representación en espacio de estados del sistema, suponiendo que ΘL(t) es la salida y que ei(t) es la entrada. Representar el Sistema mediante un diagrama de bloques. A partir del diagrama de bloques del sistema, determinar nuevamente y por medio de álgebra de bloques la función de transferencia ΘL(s)/Ei(s).

null

Diagrama de bloques – pago por un ejercicio

Función de transferencia, diagrama de bloques, álgebra de bloques. Observación: Pago por un ejercicio. Solicitar la entrega en PDF al whatsapp +34633129287

€15,00

14. Hallar la función de transferencia ΘL(s)/Θr(s) del Sistema  mostrado en la Figura 59. Diseñar el diagrama de bloques del sistema.

null

Diagrama de bloques – pago por un ejercicio

Función de transferencia, diagrama de bloques, álgebra de bloques. Observación: Pago por un ejercicio. Solicitar la entrega en PDF al whatsapp +34633129287

€15,00

15. Hallar la función de transferencia Q2(s)/Q1(s) del Sistema de Nivel de Líquido mostrado en la Figura 68. Hallar la representación en espacio de estados del Sistema tomando a q2(t) como la salida, y a q1(t) como la entrada. Obtener el diagrama de bloques del sistema y determinar la misma función de transferencia por medio de álgebra de bloques.

null

Diagrama de bloques – pago por un ejercicio

Función de transferencia, diagrama de bloques, álgebra de bloques. Observación: Pago por un ejercicio. Solicitar la entrega en PDF al whatsapp +34633129287

€15,00

16. Un modelo muy simplificado de la dinámica de un cohete, se observa en la Figura 1. Una barra uniforme de masa m y longitud 2L, sometida a la fuerza de la gravedad en G (centro de gravedad de la barra) y a dos fuerzas exteriores aplicadas en su extremo inferior: una vertical V(t) y otra horizontal H(t). Se pide: i) Dibujar el diagrama de variables de entrada y salida. Caracterizar el punto de equilibrio determinado por x(0)=0, y(0)=0, .ii) Obtener el sistema de ecuaciones linealizado alrededor del punto de equilibrio. iii) Dibujar el diagrama de bloques del sistema. iV)Obtener a partir de él las funciones de transferencia:

null

null

17. Determinar la expresión para la salida C(s) del sistema de la Figura 90:

null

Figura 90

Diagrama de bloques – pago por un ejercicio

Función de transferencia, diagrama de bloques, álgebra de bloques. Observación: Pago por un ejercicio. Solicitar la entrega en PDF al whatsapp +34633129287

€15,00

Figura 90

Diagrama de bloques en sistemas de control – Problemas resueltos – Catálogo 8

Pago por todos los problemas. En esta guía PDF  se determina el Diagrama de Bloques y la Función de Transferencia mediante la aplicación álgebra de bloques, de los ejercicios que más se utilizan en las clases de sistemas masa-resorte-amortiguador que forman parte a su vez de sistemas de control, señales y sistemas, análisis de redes eléctricas con motor DC, sistemas electrónicos en mecatrónica, etc. Es un buen recurso para aprender también a obtener  la representación en variables de estado. También aparecen ejemplos de como aplicar la misma técnica a redes eléctricas y sistemas de nivel de líquido.

€57,00

ATENCIÓN: Si no encuentra lo que busca….Puedo resolverle ejercicios y problemas de diagrama de bloques de inmediato. Por favor envíe un mensaje a mi WhatsApp y le doy la solución lo más pronto posible…+34633129287…puede pagar con Paypal y TC.

Para resolver esta guía se utilizarán las siguientes reglas:

null

null

Puedes consultar también:

Elaborado por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – Twitter: @dademuch

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Jaén – España: Tlf. 633129287

Caracas, Quito, Guayaquil, Lima, México, Bogotá, Cochabamba, Santiago.

WhatsApp: +34 633129287

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

 

Análisis de sistemas de control, Matemática aplicada - Appd Math, Transformada de Laplace

Transformada de Laplace del Pulso Rectangular

Considere la función pulso:

null

Donde A y t0 son constantes.

Esta función pulso puede considerarse una función escalón U(t) de altura A, que empieza en t=0, sobreimpuesta por un escalón U(t-to)  de altura –A, que empieza en  t=t0, es decir:

null

En este caso, la transformada de f(t) se obtiene mediante:

null

Aplicando la tabla para transformadas de Laplace (anexo) obtenemos:

null

Por lo tanto, la transformada de Laplace la función pulso es:

null

Para el pulso rectangular, simplemente debemos considerar que:

null

Esta función pulso rectangular de ancho t0 puede considerarse una función escalón U(t) de altura A, que empieza en t=0, y es luego anulada (no sobreimpuesta como el caso anterior) por un escalón U(t-to)  de altura –A, que empieza en  t=t0, es decir:

null

Por lo tanto, la transformada de Laplace la función pulso rectangular es:

null

Con la ecuación (2) en la mano podemos adaptar este resultado a situaciones particulares. Suponga el caso de un pulso rectangular como el mostrado en la siguiente Figura:

null

Al aplicar el mismo procedimiento vemos que:

null

Por lo tanto, la transformada de Laplace la función de la Figura es como en la ecuación (3):

null

ANEXO

null

Referencia:

  • Ingeniería de control moderna (Ogata)

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Caracas, Quito, Guayaquil, Cuenca, España. +34633129287

WhatsApp:  +34633129287   

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Análisis de sistemas de control, Respuesta en el tiempo

Problemas resueltos de Análisis de respuesta transitoria de sistemas lineales – Matlab – Catálogo 9

En esta guía PDF  se analiza la respuesta transitoria de sistemas Eléctricos, Electrónicos, Masa-resorte-amortiguador, Electromecánicos, que forman parte a su vez de sistemas de control, señales y sistemas, análisis de redes eléctricas, etc.  Una vez cancelado debes Solicitar la guía vía email – WhatsApp. Se facilita pago por PayPal, Tarjeta de crédito o débito.

A continuación, los enunciados de problemas resueltos en esta guía.

Problema 1.

Para el sistema de la Figura siguiente:

null

1.a Calcula y justifica el valor de la ganancia estática y la constante de tiempo cuando G(s) y H(s):

nullSimular en Matlab.

1.b Analiza el comportamiento (subamortiguado, sobreamortiguado, críticamente amortiguado, inestable, oscilación mantenida) de la salida para los diferentes valores del parámetro a ante la entrada escalón unitario cuando:

null

El parámetro a toma valores reales. Simular en Matlab.

1.c Calcula frecuencia natural no amortiguada, frecuencia natural amortiguada, factor de amortiguamiento, tiempo de crecimiento, tiempo pico, sobre impulso máximo para el caso b. Simular en Matlab

Respuesta

Problema 1. Para adquirir esta solución se facilita pago a través de Paypal o con TC.

Problemas Análisis de respuesta transitoria de sistemas lineales

Respuesta transitoria. Observación: Pago por un ejercicio. Solicitar la entrega en PDF al whatsapp +34633129287.

€15,00

Problema 2. 

Sea el sistema adjunto:

nullSe pide:

2.a Obtener la función de transferencia del sistema, considerando la tensión ei como la señal de entrada al sistema y la tensión eo como la señal de salida del sistema.

2.b Calcular, a partir del modelo obtenido, el valor de estabilización del sistema ante entrada escalón unitario. ¿Depende de los valores de las resistencias y del condensador?

2.c Obtener el valor del tiempo en el que la salida del sistema alcanza el 95% de su valor final, suponiendo que los valores de R y C son iguales a 1. Simular en Matlab.

Respuesta

Problema 2. Para adquirir esta solución se facilita pago a través de Paypal o con TC.

Problemas Análisis de respuesta transitoria de sistemas lineales

Respuesta transitoria. Observación: Pago por un ejercicio. Solicitar la entrega en PDF al whatsapp +34633129287.

€15,00

Ejercicio 3. 

Para el sistema adjunto:

null

Se pide:

3.a Obtener la función de transferencia del sistema, considerando la tensión vi como la señal de entrada al sistema y la tensión vo como la señal de salida del sistema.

3.b Calcular, a partir del modelo obtenido, el valor de estabilización del sistema ante entrada escalón unitario. ¿Depende del valor de la resistencia R?

3.c Analiza el sistema respecto al parámetro R. Simular en Matlab.

Respuesta

Problema 3. Para adquirir esta solución se facilita pago a través de Paypal o con TC.

Problemas Análisis de respuesta transitoria de sistemas lineales

Respuesta transitoria. Observación: Pago por un ejercicio. Solicitar la entrega en PDF al whatsapp +34633129287.

€15,00

Puedes consultar también:

Elaborado por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – Twitter: @dademuch

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Jaén – España: Tlf. 633129287

Caracas, Quito, Guayaquil, Lima, México, Bogotá, Cochabamba, Santiago.

WhatsApp: +34 633129287

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com