Análisis de sistemas de control, Criterio de Nyquist

Estabilidad vía Nyquist Diagrama – El criterio de Nyquist

The Nyquist criterion can tell us if the system is stable or unstable by determining how many closed-loop poles are in the right half-plane of the closed-loop system of Figure 1:

null

Figure 1

Consider the contour A defined in s-plane of Figure 2:

null

Figure 2

If a contour, A, that encircles the entire right half-plane of the root-locus of the system determined by the characteristic equation 1+ G(s)H(s), is mapped through G(s)H(s), then the number of closed-loop poles, Z, in the right half-plane equals the number of open-loop poles, P, that are in the right half-plane minus the number of counterclockwise revolutions, N, around -1 of the mapping; that is, Z:

null

Thus, to reach stability, Z must be equal to zero.

This mapping is called the Nyquist diagram, or Nyquist plot, of G(s)H(s).

To understand the Nyquist criteria for stability, we must first establish four important concepts that will be used during its application:

(1) the relationship between the poles of 1+ G(s)H(s) and the poles of G(s)H(s); (2) the relationship between the zeros of 1+ G(s)H(s) and the poles of the closed-loop transfer function (3) the concept of mapping points; and (4) the concept of mapping contours.

We could demonstrate that the poles of 1+ G(s)H(s) are the same as the
poles of G(s)H(s), the open-loop system, and (2) the zeros of  1+ G(s)H(s) are the
same as the poles of closed-loop transfer function of the system.

In construction…

Fuentes:

  1. Modern_Control_Engineering, Ogata 4t
  2. Control Systems Engineering, Nise
  3. Sistemas de Control Automatico, Kuo

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Some content on this page was disabled on 3 April, 2020 as a result of a DMCA takedown notice from Pearson Education, Inc.. You can learn more about the DMCA here:

https://en.support.wordpress.com/copyright-and-the-dmca/

Análisis de sistemas de control, Criterio de Nyquist

El diagrama de Nyquist

El diagrama de Nyquist, también es conocido como “La Traza Polar” de una función de transferencia senoidal G(jω), es una gráfica de la magnitud de G(jω) contra el ángulo de fase de G(jω) en coordenadas polares, conforme ω varía de cero a infinito. Por tanto, El diagrama de Nyquist es el lugar geométrico de los vectores:

null
conforme ω varía de cero a infinito. Observe que, en las gráficas polares, los ángulos de fase son positivos (negativos) si se miden en el sentido contrario de las manecillas del reloj (en el sentido de las manecillas) a partir del eje real positivo.

La siguiente figura muestra un ejemplo de un diagrama de Nyquist:

null

Todos los puntos de la traza polar de G(jω) representan el punto terminal de un vector en un valor determinado de ω. Las proyecciones de G(jω) en los ejes real e imaginario son sus componentes real e imaginaria. La magnitud y el ángulo de fase de G(jω) deben calcularse directamente para cada frecuencia ω con el propósito de construir trazas polares.

Conceptualmente, el diagrama de Nyquist se traza sustituyendo los puntos del “contorno” que encierra el semiplano derecho, en la función G(s)H(s). Este proceso se llama mapeo (mapping):

null

Consideremos el sistema de control a lazo cerrado de la Figura 1:

null

Figura 1

Thus, in the Nyquist diagram, the contour that encloses the right half-plane, shown in Figure 2, can be mapped through the function G(s)H(s), derived from Figure 1,  by substituting points along the contour into G(s)H(s):

null

Figura 2

Entonces, en el Diagrama de Nyquist, el contorno que encierra el semiplano derecho, que se muestra en la Figura 2, puede mapearse a través de la función G(s)H(s), derivada de la Figura 1, sustituyendo puntos a lo largo del contorno en la función G (s) H ( s).

Estabilidad vía el Diagrama de Nyquist

If a contour, A, that encircles the entire right half-plane of the root-locus of the system determined by the characteristic equation 1+ G(s)H(s), is mapped through G(s)H(s), then the number of closed-loop poles, Z, in the right half-plane equals the number of open-loop poles, P, that are in the right half-plane minus the number of counterclockwise revolutions, N, around -1 of the mapping; that is, Z:

Si un contorno, A, que rodea todo el semiplano derecho del lugar de raíces del sistema determinado por la ecuación característica 1+ G(s)H(s), se mapea a través de G(s)H(s), entonces el número de polos del sistema a lazo cerrado, Z, en el semiplano derecho, es igual al número de polos del sistema a lazo abierto, P, que están en el semiplano derecho menos el número de revoluciones en sentido antihorario, N, alrededor de -1+j0 del plano complejo ; es decir, Z:

null

Por tanto, para lograr un sistema estable a lazo cerrado, Z debe ser igual a cero.

Este “mapping” es llamado El Diagrama de Nyquist , o Nyquist plot, de G(s)H(s). Para más información y ejemplos ver: Criterio de Nyquist para estabilidad

Ejemplo 

Considere el sistema de control cuyo esquema y diagrama de bloques se muestran en la siguiente Figura 3:

null

Figura 3

Conceptualmente, el diagrama de Nyquist se representa sustituyendo los puntos del contorno que se muestran en la Figura 4(a) en G(s)H(s):

null

Cada Polo y cada Zero de G(s)H(s) que se muestra en la Figura 3(b) es un vector en la Figura 4(a) y 4(b). El vector resultante, , encontrado en cualquier punto a lo largo del contorno, es en general el producto de los vectores Zero dividido por el producto de los vectores Polo (ver Figura 4 (c)). Por lo tanto, la magnitud de la resultante es el producto de las longitudes Zero dividido por el producto de las longitudes de los Polos, y el ángulo de la resultante es la suma de los ángulos Zero menos la suma de los ángulos de los Polos.

null

Figura 4

El mapeo del punto A al punto C también puede explicarse analíticamente. Desde
A a C, la colección de puntos a lo largo del contorno es imaginaria. Por lo tanto, de A a C,
G(s)H(s)=G(s)*1=G(s)=G(jω), o de la Figura 3(b):

null

A frecuencia igual cero:

null

Por lo tanto, el diagrama de Nyquist comienza en 50/3 en un ángulo de . A medida que ω aumenta, la parte real sigue siendo positiva, y la parte imaginaria sigue siendo negativa.

En null la parte real se vuelve negativa. En null, el diagrama de Nyquist cruza el eje real negativo ya que el término imaginario va a cero. El valor real en el cruce del eje, punto Q en la Figura 4 (c), es -0.874. Continuando hacia, la parte real es negativa, y la parte imaginaria es positiva. A frecuencia infinita:

null

o cero a los 90°. aproximadamente.

Alrededor del semicírculo infinito desde el punto C hasta el punto D que se muestra en la Figura 4(b), los vectores giran en sentido horario, cada uno 180°. Por lo tanto, la resultante sufre una rotación en sentido antihorario de 3×180, comenzando en el punto C’ y terminando en el punto D’ de la Figura 4 (c).

Diagrama de Nyquist con Matlab

Considere la siguiente función de transferencia a lazo abierto:

null

Para elaborar el Diagrama de Nyquist, podemos utilizar los siguientes comandos en el command window de Matlab:

>> s=tf(‘s’)

>> G=1/(s^2+0.8*s+1)

>> nyquist(G)

Esta línea de comandos genera la siguiente gráfica:

null

Podemos obtener información sobre puntos de interés en el diagrama de Nyquist haciendo clik una vez sobre el punto de interés en el contorno:

null

Fuentes:

  1. Modern_Control_Engineering, Ogata 4t
  2. Control Systems Engineering, Nise
  3. Sistemas de Control Automatico, Kuo

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Some content on this page was disabled on 3 April, 2020 as a result of a DMCA takedown notice from Pearson Education, Inc.. You can learn more about the DMCA here:

https://en.support.wordpress.com/copyright-and-the-dmca/