Análisis de sistemas de control, Diagramas de bloques

Diagrama de Bloques – Problemas resueltos – Catálogo 8 – Sistema MRA y eléctrico.

A continuación los ejercicios de esta guía:

  1. Hallar las ecuaciones del sistema de la Figura 7 y representarlo mediante variables de estado. A partir de allí determinar el diagrama de bloques del sistema. Luego, utilizando álgebra de diagrama de bloques, Hallar la función de transferencia X(s)/U(s). Considerar a x(t) como la salida y a u(t) como la entrada. Comprobar el resultado mediante transformada de Laplace.

null

  1. Hallar las ecuaciones del sistema de la Figura 8. Hallar la representación matricial del sistema (variables de estado). Considere a x1(t) como la salida, y a u(t) como la entrada. Construya el diagrama de bloques del sistema y utilizando álgebra de bloques determinar la función de transferencia X1(s)/U(s).

null

  1. Hallar las ecuaciones del sistema de la figura 22. Determinar la función de transferencia X1(s)/U(s). Determinar el diagrama de bloques del sistema a partir de la función de transferencia obtenida.

null

  1. Hallar las ecuaciones del Sistema de la Figura 24. Hallar la representación en espacio de estados del sistema, considerando a Θ1(t) como la salida y a T(t) como la entrada. Hallar el diagrama de bloques del sistema y a partir de allí, mediante álgebra de bloques, determinar la función de transferencia Θ1(s)/T(s).

null

  1. Hallar las ecuaciones del sistema de la Figura 25. Determinar la función de transferencia X1(s)/F(s). Obtener el diagrama de bloques del sistema a partir de la función de transferencia obtenida (Explicar paso a paso). Graficar la respuesta del sistema a una entrada función escalón mediante Matlab. Considerar k1= k2= k3= 1 N/m, b1= b2= b3=1 N-s/m, m1= m2= m3=1 Kg.

null

null

Gráfica de respuesta al escalón unitario del ejercicio 5.

  1. Determinar las ecuaciones diferenciales que representan el modelo del sistema de la Figura 75. Utilizar el método de análisis de nodos. Hallar la función de transferencia Vo(s)/V(s). Realice la representación del sistema en diagrama de bloques a partir de la función de transferencia Vo(s)/V(s). Considerar R1=1Ω,  R2= R3=1 Ω, L=1 H, C1=C2=1 pF.

null

  1. Obtener la función de transferencia Vo(s)/V(s) del sistema eléctrico de la figura 75, a partir del diagrama de bloques del sistema obtenido en el problema 6, utilizando álgebra de bloques. Simular y analizar en Matlab la respuesta del sistema a una entrada escalón unitario.
  2. en construcción…

 

Puedes consultar también:

Elaborado por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – Twitter: @dademuch

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Jaén – España: Tlf. 633129287

Caracas, Quito, Guayaquil, Lima, México, Bogotá, Cochabamba, Santiago.

WhatsApp: +34 633129287

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Análisis de sistemas de control, Diagrama de Bode, Función de Transferencia

Función de transferencia a partir del diagrama de Bode.

Los gráficos de Bode son una presentación conveniente de los datos de respuesta de frecuencia para el propósito de estimar la función de transferencia. El Diagrama de Bode permite determinar y extraer partes de la la función de transferencia, lo que abrirá el camino a más cálculos para encontrar las partes restantes de dicha función.

Aunque la experiencia y la intuición son invaluables en el proceso, los siguientes pasos  ofrecen una guía:

1. Observe las gráficas de magnitud y fase de Bode y estime la configuración de polos y zeros del sistema. Observar la pendiente inicial en el diagrama de magnitud para determinar el tipo de sistema. Observar las excursiones de fase para tener una idea de la diferencia entre el número de polos y el número de zeros.
2. Vea si partes de las curvas de magnitud y fase representan gráficas obvias de respuesta de frecuencia de polo o zero de primer o segundo orden.
3. Observar si hay algún pico revelador o depresiones en la gráfica de magnitud que indique un polo de segundo orden o zero amortiguado, respectivamente.
4. Si alguna respuesta típica de un polo o un zero puede ser identificada, superponer líneas apropiadas de ± 20 o ± 40 dB / década en la curva de magnitud o líneas de ±45°/década en la curva de fase y estimar las frecuencias de ruptura. Para polos o zeros de segundo orden, calcule la relación de amortiguamiento y la frecuencia natural a partir de las curvas estándar.

5. Diseñar una función de transferencia de ganancia unitaria utilizando los polos y zeros encontrados. Obtenga la respuesta de frecuencia de esta función de transferencia y reste esta respuesta de la respuesta de frecuencia anterior, con la que comenzó el ejercicio. Ahora tiene una respuesta de frecuencia de complejidad reducida a partir de la cual comenzar el proceso nuevamente para extraer más información sobre los polos y ceros del sistema. Un programa de computadora como MATLAB es de gran ayuda para este paso.

Example

Encontrar la función de transferencia del sistema cuyo diagrama de Bode se muestra en la Figura 1:

null

Figura 1

Primero extraigamos los polos subamortigados, basados en el pico en la curva de magnitud. Estimamos que la frecuencia natural está cerca de la frecuencia pico, o aproximadamente 5 rad/s. De la Figura 1, podemos ver un pico alrededor de 6.5 dB, que se interpreta como un factor de amortiguamiento ζ=0,24. La función de transferencia estándar de un sistema de segundo orden con ganancia unitaria es:

null

Se restan los diagramas de Bode en la Figura 2:

null

Figura 2

Al superponer una línea de -20 dB/decade en la respuesta de magnitud y una línea de -45°/decade en la respuesta de fase, detectamos un polo final. A partir de la respuesta de fase, estimamos la frecuencia de ruptura a 90 rad/s. Restando la respuesta de G2(s)=90/(s+90) de la respuesta anterior se obtiene la respuesta en la Figura 3.

null

Figura 3

La figura 3 tiene una curva de magnitud y fase similar a la generada por una función de retraso. Dibujamos una línea de -20 dB/decade y la ajustamos a las curvas. Las frecuencias de ruptura se leen de la figura como 9 y 30 rad/s. Una función de transferencia de ganancia unitaria que contiene un polo en -9 y un cero en -30 es G3(s)=0.3(s+30)/(s+9). Al restar G1(s)G2(s)G3(s), encontramos la respuesta de frecuencia de magnitud plana ± 1 dB y la respuesta de fase plana a -3 ± 5 °. Por lo tanto, concluimos que hemos terminado de extraer las funciones de transferencia dinámica, la cual es:

null

Es interesante notar que la curva original se obtuvo de la función:

null

Fuentes:

  1. Modern_Control_Engineering, Ogata 4t
  2. Control Systems Engineering, Nise
  3. Sistemas de Control Automatico, Kuo

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Some content on this page was disabled on 3 April, 2020 as a result of a DMCA takedown notice from Pearson Education, Inc.. You can learn more about the DMCA here:

https://en.support.wordpress.com/copyright-and-the-dmca/

Análisis de sistemas de control, Diagrama de Bode

El diagrama de Bode – Gráfica de respuesta en frecuencia de un sistema de control.

El diagramas de Bode es el trazado de la respuesta de frecuencia de un sistema con gráficos de magnitud y fase separados. Las curvas de respuesta en frecuencia, de magnitud y  de fase como funciones de log ω se denominan Diagramas de Bode. El dibujar diagramas de Bode se puede simplificar porque se pueden aproximar como una secuencia de líneas rectas. Las aproximaciones en línea recta simplifican la evaluación de la de magnitud y  de fase de la respuesta en frecuencia.

Cuando elaboramos las gráficas de magnitud y  de fase por separado, la gráfica de la curva de magnitud puede tener el eje de las ordenadas en decibeles (dB) vs. log ω en el eje de las abscisas, donde dB = 20 log M.

Ejemplo

Grafica el Diagrama de Bode para la respuesta en frecuencia del sistema descrito por la función de Transferencia G(s):

null

null

Factores Básicos de G(jω)H(jω)

La ventaja principal de usar una traza logarítmica es la facilidad relativa de graficar las curvas de la respuesta en frecuencia. Los factores básicos que suelen ocurrir en una función de transferencia arbitraria G(jω)H(jω) son:

  1. La ganancia K
  2. Los factores de integral y de derivada null,
  3. Los factores de primer orden null,
  4. Los factores cuadráticos null.

Una vez que nos familiarizamos con las trazas logarítmicas de estos factores básicos, es posible utilizarlas con el fin de construir una traza logarítmica compuesta para cualquier forma de G(jω)H(jω), trazando las curvas para cada factor y agregando curvas individuales en forma gráfica, ya que agregar los logaritmos de las ganancias corresponde a multiplicarlos entre sí.

El proceso de obtener la traza logarítmica se simplifica todavía más mediante aproximaciones asintóticas para las curvas de cada factor.

La ganancia K. Un número mayor que la unidad tiene un valor positivo en decibeles, en tanto que un número menor que la unidad tiene un valor negativo.

La curva de magnitud logarítmica para una ganancia constante K es una recta horizontal cuya magnitud es de 20 log K decibeles. El ángulo de fase de la ganancia K es cero. El efecto de variar la ganancia K en la función de transferencia es que sube o baja la curva de magnitud logarítmica de la función de transferencia en la cantidad constante correspondiente, pero no afecta la curva de fase.

Factores de integral y de derivadanull(polos y ceros en el origen). La magnitud logarítmica de l/ en decibeles es:

null

El ángulo de fase de l/ es constante e igual a -90°.

En las trazas de Bode, las razones de frecuencia se expresan en términos de octavas o décadas. Una octava es una banda de frecuencia de ω1 a 2ω1, en donde ω1 es cualquier frecuencia. Una década es una banda de frecuencia de ω1 a 10ω1, en donde, otra vez, ω1 es cualquier frecuencia. (En la escala logarítmica del papel semi logarítmico, cualquier razón de frecuencia determinada se representa mediante la misma distancia horizontal. Por ejemplo, la distancia horizontal de ω=1  a ω=10  es igual a la de ω=3  a ω=30.

Si se gráfica la magnitud logarítmica de -20logω dB contra ω en una escala logarítmica,  se obtiene una recta. Para trazar esta recta, necesitamos ubicar un punto (0 dB, ω= 1) en ella. Dado que:

null

La pendiente m de la recta para l/ es de:

null

El ángulo de fase del factor l/ es constante e igual a -90°

De igual forma:

null

La pendiente m de la recta para  es de:

null

El ángulo de fase del factor  es constante e igual a 90°

La siguiente figura muestra curvas de respuesta en frecuencia para l/ y , respectivamente.

null

Observar que ambas magnitudes logarítmicas se vuelven iguales a 0 dB en ω=1.

Por tanto, si la función de transferencia contiene el factor (l/)n o ()n , la magnitud logarítmica se convierte, respectivamente, en:

nullO bien

null

Por tanto, las pendientes de las curvas de magnitud logarítmica para los factores  (l/)n y ()n son -20n dB/década y 20n dB/década, respectivamente.

El ángulo de fase de (l/)n es igual a -90°n durante todo el rango de frecuencia, en tanto que el ángulo de fase de ()n es igual a 90°n en todo el rango de frecuencia. Las curvas de magnitud pasarán por el punto (0 dBω= 1).

Factores de primer ordennull. La magnitud logarítmica del factor de primer orden l/(1+jωT) en decibeles es:

null

Para frecuencias bajas, tales que ω<<1/T, la magnitud logarítmica se aproxima mediante:

null

Por tanto, la curva de magnitud logarítmica para frecuencias bajas en este factor es la línea 0 dB constante. Para frecuencias altas, tales que :

null

Ésta última es una expresión aproximada para el rango de altas frecuencias. En ω=1/T , la magnitud logarítmica es igual a 0 dB; en ω=10/T, la magnitud logarítmica es de -20 dB. Por tanto, el valor de -20logωT dB  disminuye en 20 dB para todas las décadas de ω. De esta forma, para ω>>1/T, la curva de magnitud logarítmica es una línea recta con una pendiente de -20 dB/década (o -6 dB/octava).

Nuestro análisis muestra que la representación logarítmica de la curva de respuesta en frecuencia del factor l/(1+jωT) se aproxima mediante dos asíntotas (líneas rectas), una de las cuales es una recta de 0 dB para el rango de frecuencia 0<ω<1/T  y la otra es una recta con una pendiente de -20 dB/década (o -6 dB/octava) para el rango de frecuencia 1/T<ω<∞. La frecuencia en la cual las dos asíntotas se encuentran se denomina frecuencia de esquina o frecuencia de corte. Para el factor l/(1+jωT), la frecuencia ω=1/T es la frecuencia de esquina, dado que en ese punto ambas asíntotas tienen el mismo valor.

null

Una ventaja de las trazas de Bode es que, para factores recíprocos, por ejemplo, el factor 1+jωT, las curvas de magnitud logarítmica y de ángulo de fase sólo necesitan cambiar de signo. Por tanto, la pendiente de la asíntota de alta frecuencia de 1+jωT es 20 dB/década, y el ángulo de fase varía de 0°  a 90°  conforme la frecuencia ω se incrementa de cero a infinito., como se puede ver en la siguiente Figura:

null

Factores cuadráticosnull. Los sistemas de control suelen tener factores cuadráticos de la forma:

null

Si ζ>1, este factor cuadrático se expresa como un producto de dos factores de primer orden con polos reales. Si 0<ζ<1, este factor cuadrático es el producto de dos factores complejos conjugados.

La curva asintótica de respuesta en frecuencia para null se obtiene del modo siguiente. Dado que:

null

para frecuencias bajas tales que ω<<ωn, la magnitud logarítmica se convierte en:

null

Por tanto, la asintota de frecuencia baja es una recta horizontal en 0 dB. Para frecuencias altas tales que ω>>ωn, la magnitud logarítmica se vuelve:

null

La ecuación para la asíntota de alta frecuencia es una recta con pendiente de -40dB/década, dado que:

null

La asíntota de alta frecuencia intersecta la de baja frecuencia en ω=ωn, dado que en esta frecuencia:

null

Esta frecuencia ωn es la frecuencia de esquina para el factor cuadrático considerado.

null

Fuentes:

  1. Modern_Control_Engineering, Ogata 4t
  2. Control Systems Engineering, Nise
  3. Sistemas de Control Automatico, Kuo

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

 

Some content on this page was disabled on 3 April, 2020 as a result of a DMCA takedown notice from Pearson Education, Inc.. You can learn more about the DMCA here:

https://en.support.wordpress.com/copyright-and-the-dmca/

Análisis de sistemas de control, Criterio de Nyquist

Estabilidad vía Nyquist Diagrama – El criterio de Nyquist

The Nyquist criterion can tell us if the system is stable or unstable by determining how many closed-loop poles are in the right half-plane of the closed-loop system of Figure 1:

null

Figure 1

Consider the contour A defined in s-plane of Figure 2:

null

Figure 2

If a contour, A, that encircles the entire right half-plane of the root-locus of the system determined by the characteristic equation 1+ G(s)H(s), is mapped through G(s)H(s), then the number of closed-loop poles, Z, in the right half-plane equals the number of open-loop poles, P, that are in the right half-plane minus the number of counterclockwise revolutions, N, around -1 of the mapping; that is, Z:

null

Thus, to reach stability, Z must be equal to zero.

This mapping is called the Nyquist diagram, or Nyquist plot, of G(s)H(s).

To understand the Nyquist criteria for stability, we must first establish four important concepts that will be used during its application:

(1) the relationship between the poles of 1+ G(s)H(s) and the poles of G(s)H(s); (2) the relationship between the zeros of 1+ G(s)H(s) and the poles of the closed-loop transfer function (3) the concept of mapping points; and (4) the concept of mapping contours.

We could demonstrate that the poles of 1+ G(s)H(s) are the same as the
poles of G(s)H(s), the open-loop system, and (2) the zeros of  1+ G(s)H(s) are the
same as the poles of closed-loop transfer function of the system.

In construction…

Fuentes:

  1. Modern_Control_Engineering, Ogata 4t
  2. Control Systems Engineering, Nise
  3. Sistemas de Control Automatico, Kuo

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Some content on this page was disabled on 3 April, 2020 as a result of a DMCA takedown notice from Pearson Education, Inc.. You can learn more about the DMCA here:

https://en.support.wordpress.com/copyright-and-the-dmca/

Análisis de sistemas de control, Criterio de Nyquist

El diagrama de Nyquist

El diagrama de Nyquist, también es conocido como “La Traza Polar” de una función de transferencia senoidal G(jω), es una gráfica de la magnitud de G(jω) contra el ángulo de fase de G(jω) en coordenadas polares, conforme ω varía de cero a infinito. Por tanto, El diagrama de Nyquist es el lugar geométrico de los vectores:

null
conforme ω varía de cero a infinito. Observe que, en las gráficas polares, los ángulos de fase son positivos (negativos) si se miden en el sentido contrario de las manecillas del reloj (en el sentido de las manecillas) a partir del eje real positivo.

La siguiente figura muestra un ejemplo de un diagrama de Nyquist:

null

Todos los puntos de la traza polar de G(jω) representan el punto terminal de un vector en un valor determinado de ω. Las proyecciones de G(jω) en los ejes real e imaginario son sus componentes real e imaginaria. La magnitud y el ángulo de fase de G(jω) deben calcularse directamente para cada frecuencia ω con el propósito de construir trazas polares.

Conceptualmente, el diagrama de Nyquist se traza sustituyendo los puntos del “contorno” que encierra el semiplano derecho, en la función G(s)H(s). Este proceso se llama mapeo (mapping):

null

Consideremos el sistema de control a lazo cerrado de la Figura 1:

null

Figura 1

Thus, in the Nyquist diagram, the contour that encloses the right half-plane, shown in Figure 2, can be mapped through the function G(s)H(s), derived from Figure 1,  by substituting points along the contour into G(s)H(s):

null

Figura 2

Entonces, en el Diagrama de Nyquist, el contorno que encierra el semiplano derecho, que se muestra en la Figura 2, puede mapearse a través de la función G(s)H(s), derivada de la Figura 1, sustituyendo puntos a lo largo del contorno en la función G (s) H ( s).

Estabilidad vía el Diagrama de Nyquist

If a contour, A, that encircles the entire right half-plane of the root-locus of the system determined by the characteristic equation 1+ G(s)H(s), is mapped through G(s)H(s), then the number of closed-loop poles, Z, in the right half-plane equals the number of open-loop poles, P, that are in the right half-plane minus the number of counterclockwise revolutions, N, around -1 of the mapping; that is, Z:

Si un contorno, A, que rodea todo el semiplano derecho del lugar de raíces del sistema determinado por la ecuación característica 1+ G(s)H(s), se mapea a través de G(s)H(s), entonces el número de polos del sistema a lazo cerrado, Z, en el semiplano derecho, es igual al número de polos del sistema a lazo abierto, P, que están en el semiplano derecho menos el número de revoluciones en sentido antihorario, N, alrededor de -1+j0 del plano complejo ; es decir, Z:

null

Por tanto, para lograr un sistema estable a lazo cerrado, Z debe ser igual a cero.

Este “mapping” es llamado El Diagrama de Nyquist , o Nyquist plot, de G(s)H(s). Para más información y ejemplos ver: Criterio de Nyquist para estabilidad

Ejemplo 

Considere el sistema de control cuyo esquema y diagrama de bloques se muestran en la siguiente Figura 3:

null

Figura 3

Conceptualmente, el diagrama de Nyquist se representa sustituyendo los puntos del contorno que se muestran en la Figura 4(a) en G(s)H(s):

null

Cada Polo y cada Zero de G(s)H(s) que se muestra en la Figura 3(b) es un vector en la Figura 4(a) y 4(b). El vector resultante, , encontrado en cualquier punto a lo largo del contorno, es en general el producto de los vectores Zero dividido por el producto de los vectores Polo (ver Figura 4 (c)). Por lo tanto, la magnitud de la resultante es el producto de las longitudes Zero dividido por el producto de las longitudes de los Polos, y el ángulo de la resultante es la suma de los ángulos Zero menos la suma de los ángulos de los Polos.

null

Figura 4

El mapeo del punto A al punto C también puede explicarse analíticamente. Desde
A a C, la colección de puntos a lo largo del contorno es imaginaria. Por lo tanto, de A a C,
G(s)H(s)=G(s)*1=G(s)=G(jω), o de la Figura 3(b):

null

A frecuencia igual cero:

null

Por lo tanto, el diagrama de Nyquist comienza en 50/3 en un ángulo de . A medida que ω aumenta, la parte real sigue siendo positiva, y la parte imaginaria sigue siendo negativa.

En null la parte real se vuelve negativa. En null, el diagrama de Nyquist cruza el eje real negativo ya que el término imaginario va a cero. El valor real en el cruce del eje, punto Q en la Figura 4 (c), es -0.874. Continuando hacia, la parte real es negativa, y la parte imaginaria es positiva. A frecuencia infinita:

null

o cero a los 90°. aproximadamente.

Alrededor del semicírculo infinito desde el punto C hasta el punto D que se muestra en la Figura 4(b), los vectores giran en sentido horario, cada uno 180°. Por lo tanto, la resultante sufre una rotación en sentido antihorario de 3×180, comenzando en el punto C’ y terminando en el punto D’ de la Figura 4 (c).

Diagrama de Nyquist con Matlab

Considere la siguiente función de transferencia a lazo abierto:

null

Para elaborar el Diagrama de Nyquist, podemos utilizar los siguientes comandos en el command window de Matlab:

>> s=tf(‘s’)

>> G=1/(s^2+0.8*s+1)

>> nyquist(G)

Esta línea de comandos genera la siguiente gráfica:

null

Podemos obtener información sobre puntos de interés en el diagrama de Nyquist haciendo clik una vez sobre el punto de interés en el contorno:

null

Fuentes:

  1. Modern_Control_Engineering, Ogata 4t
  2. Control Systems Engineering, Nise
  3. Sistemas de Control Automatico, Kuo

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Some content on this page was disabled on 3 April, 2020 as a result of a DMCA takedown notice from Pearson Education, Inc.. You can learn more about the DMCA here:

https://en.support.wordpress.com/copyright-and-the-dmca/

Análisis de sistemas de control, Función de Transferencia, Sin categoría, Variables de estado

Converting a Transfer Function to State Space representation

To convert a transfer function into state equations in phase variable form, we first convert the transfer function to a differential equation by cross-multiplying and taking the inverse Laplace transform, assuming zero initial conditions. Then we represent the differential equation in state space in phase variable form. An example illustrates the process.

Example 1

Find the state-space representation in phase-variable form for the transfer function shown in Figure (1):

null
Figure 1

Step 1. Find the associated differential equation:

null

Cross-multiplying yields:

null

The corresponding differential equation is found by taking the inverse Laplace  Transform, assuming zero initial conditions:

null

Step 2. Select the state variables. Choosing the state variables as successive derivatives, we get:

null

Using this notation, we can rewrite equation (1) as:

null

Step 3. Differentiating both sides of the last equations, we must find _x1 and _x2, then we use Eq. (2) to find x3. Proceeding in this way we obtain the state equations. Since the output is c=x1, the combined state and output equations are:

null

Step 4. Expressing the last equations in vector-matrix form, we get the state-space representation of the system as:

null

At this point, we can create an equivalent block diagram of the systemof Figure 1(a) to help visualize the state variables.We draw three integral blocks as shown in Figure 1(b) and label each output as one of the state variables, xi(t), as shown.

A transfer function with a polynomial in s in the numerator

The transfer function of the previous Example has a constant term in the numerator. If a transfer function has a polynomial in s in the numerator that is of order less than the polynomial in the denominator, as shown in Figure 2(a), the numerator and denominator can be handled separately. First separate the transfer function into two cascaded transfer functions, as shown in Figure 2(b); the first is the denominator, and the second is just the numerator. The first transfer function with just the denominator is converted to the phase-variable representation in state space as demonstrated in the last example. Hence, phase variable x1 is the output, and the rest of the phase variables are the internal variables of the first block, as shown in Figure 2(b).

null

Figure 2

The second transfer function with just the numerator yields:

null

Where, after taking the inverse Laplace transform with zero initial conditions, we obtain:

null

But the derivative terms are the definitions of the phase variables obtained in the
first block. Thus, writing the terms in reverse order to conform to an output equation, we obtain:

null

Hence, the second block simply forms a specified linear combination of the state
variables developed in the first block.

From another perspective, the denominator of the transfer function yields the
state equations, while the numerator yields the output equation. The next example
demonstrates the process.

Example 2

Find the state-space representation of the transfer function shown in
Figure 3(a).

null

Step 1. Separate the system into two cascaded blocks, as shown inFigure 3(b).The
first block contains the denominator and the second block contains the numerator.

Step 2. Find the state equations for the block containing the denominator. We notice that the first block’s numerator is 1/24 that of Example 1. Thus, the state equations are the same except that this system’s input matrix is 1/24 that of Example 1.

Step 3. Introduce the effect of the block with the numerator. The second block of
Figure 3(b) yields:

null

Taking the inverse Laplace transform with zero initial conditions, we get:

null

But:

null

Hence:

null

Thus, the last box of Figure 3(b) ‘‘collects’’ the states and generates the output equation:

null

Although the second block of Figure 3(b) shows differentiation, this block was implemented without differentiation because of the partitioning that was applied to the transfer function. The last block simply collected derivatives that were already formed by the first block.

Thus, the full state-space representation of the system is:

null

Once again we can produce an equivalent block diagram that vividly represents
our state-space model:

null

Sources:

  1. Modern_Control_Engineering, Ogata 4t
  2. Control Systems Engineering, Nise
  3. Sistemas de Control Automatico, Kuo

 

Literature review by:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

I solve problems!!

WhatsApp:  +34633129287  Immediate Attention!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Some content on this page was disabled on 3 April, 2020 as a result of a DMCA takedown notice from Pearson Education, Inc.. You can learn more about the DMCA here:

https://en.support.wordpress.com/copyright-and-the-dmca/

Análisis de sistemas de control, Función de Transferencia, Variables de estado

Convertir la Función de Transferencia en variables de estado.

Para convertir una función de transferencia en ecuaciones de estado, primero convertimos la función de transferencia a una ecuación diferencial por
multiplicación cruzada y aplicación de la transformada inversa de Laplace, suponiendo condiciones iniciales iguales a cero.

Una vez con la ecuación diferencial del sistema, procedemos a diseñar la matriz en espacio de estados del sistema. Un ejemplo ilustra este proceso.

Ejemplo 1

Encuentre la representación del sistema en espacio- estado para el sistema cuya función de transferencia que se muestra en la Figura (1):

null
Figura 1

Paso 1. Encuentra la ecuación diferencial asociada a la función de transferencia:

null

La multiplicación cruzada genera lo siguiente:

null
La ecuación diferencial correspondiente se encuentra tomando la transformada inversa de Laplace, suponiendo condiciones iniciales cero:

null

Paso 2. Seleccionar las variables de estado. Al elegir las variables de estado como  derivadas sucesivas, obtenemos:

null

Utilizando esta notación, podemos reescribir la ecuación (1) como:

null

Paso 3. Diferenciando ambos lados de estas últimas ecuaciones, debemos encontrar _x1 y _x2. Luego usamos la ecuación (2) para encontrar x3. Procediendo de esta manera obtenemos las ecuaciones de estado. Como la salida es c = x1, las ecuaciones de estado y la ecuación de salida son:

null

Paso 4. Al expresar estas últimas ecuaciones en forma de matriz de vectores, obtenemos la representación del sistema en espacio de estados:

null

Función de transferencia con polinomio en s en el numerador

La función de transferencia del ejemplo anterior tiene un término constante en el numerador. Si una función de transferencia tiene un polinomio en función de s en el numerador que es de orden menor que el polinomio en el denominador, como se muestra en la Figura 2(a), el numerador y el denominador se pueden manejar por separado. Primero, separar la función de transferencia en dos funciones de transferencia en cascada, como se muestra en la Figura 2(b). En la primera función de transferencia se procede como en el ejercicio anterior. Por lo tanto, la variable de fase x1 es la salida, y el resto de las variables de fase son las variables internas del primer bloque, como se muestra en la Figura 2(b).

null
Figura 2

La primera etapa del diagrama de bloques de la Figura 2, sabemos como tratarla, ya que es el mismo caso que el del ejemplo 1. La segunda función de transferencia con solo el numerador genera:

null

Donde, después de tomar la transformada inversa de Laplace con cero condiciones iniciales, obtenemos:

null

Pero los términos derivados de la ecuación anterior son las definiciones de las variables de fase obtenidas en el primer bloque. Por lo tanto, al escribir los términos en orden inverso para ajustarse a una ecuación de salida, obtenemos:

null

Por lo tanto, el segundo bloque simplemente forma una combinación lineal específica del estado variables desarrolladas en el primer bloque. Desde otra perspectiva, el denominador de la función de transferencia produce las ecuaciones de estado, mientras que el numerador produce la ecuación de salida. El siguiente ejemplo demuestra el proceso.

Ejemplo 2

Encuentre la representación en el espacio de estado de la función de transferencia que se muestra en la Figura 3(a).

null
Figura 3

Paso 1. Separar el sistema en dos bloques en cascada, como se muestra en la Figura 3(b).
El primer bloque contiene el denominador y el segundo bloque contiene el numerador.

Paso 2. Determinar las ecuaciones de estado para el primer bloque, el que contiene el denominador. Notamos que se trata del ejemplo 1, multiplicado por 1/24. Por lo tanto, las ecuaciones de estado son las mismas, excepto que la matriz de entrada de este sistema es 1/24 que la del Ejemplo 1.

Paso 3. Introducir el efecto del bloque con el numerador. El segundo bloque de la Figura 3(b) genera:

null

Tomando la transformada inversa de Laplace con cero condiciones iniciales, obtenemos:

null

Pero:

null

Por lo tanto:

null

Así podemos observar que el último bloque de la Figura 3(b) “recoge” los estados y genera la ecuación de salida. En forma matricial obtenemos:

null

Aunque el segundo bloque de la Figura 3(b) muestra diferenciación, este bloque se implementó sin diferenciación debido a la partición que se aplicó a la función de transferencia. El último bloque simplemente recolectó derivados que ya estaban formados por el primer bloque.

En definitiva, la representación completa en espacio de estados del sistema es:

null

Una vez más, podemos producir un diagrama de bloques equivalente que represente  nuestro modelo de espacio de estado:

null

Fuentes:

  1. Modern_Control_Engineering, Ogata 4t
  2. Control Systems Engineering, Nise
  3. Sistemas de Control Automatico, Kuo

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Some content on this page was disabled on 3 April, 2020 as a result of a DMCA takedown notice from Pearson Education, Inc.. You can learn more about the DMCA here:

https://en.support.wordpress.com/copyright-and-the-dmca/

Análisis de sistemas de control, Dinámica de sistemas, Función de Transferencia, Ingeniería Mecánica, Variables de estado

Mass-spring-damper Problems solved. Catalog 1

The transfer function of a Mass-Spring-Damper System. 

In this PDF guide, the Transfer Function of the exercises that are most commonly used in the mass-spring-damper system classes that are in turn part of control systems, signals and systems, analysis of electrical networks with DC motor, is determined. electronic systems in mechatronics, etc. It is a good resource to also learn how to obtain the block diagram of the system, or the representation in state variables. Request via email – WhatsApp. Payment is provided by PayPal, Credit or debit card. Cost: € 5

Below, the statements of problems solved in this guide.

  1. Given the System of Figure 1, find the transfer function X(s)/U(s).

null

2. Given the System of Figure 2, find the transfer function X(s)/Y(s) .

null

3. Given the System of Figure 3, find the transfer function X2(s)/U(s) using its model in the frequency domain and linear algebra.

null

4. Given the System of Figure 4, find the transfer function Y2(s)/U(s):

null

5. Given the System of Figure 5, find the transfer function X2(s)/U(s). Illustrate the use of free-body diagrams.

null

6. Given the System of Figure 6, find the transfer functions X1(s)/U(s) and X2(s)/U(s).

null

7. Given the System of Figure 7, find the transfer function X(s)/U(s). Check the same result using the combination of state-space representation and block diagrams. Take u(t) as the input and x(t) as the output.

null

8. Given the System of Figure 8, find its state-space representation, taking x1(t) as the output and u(t) as the input. Build the block diagram of the system and determine the transfer function  X1(s)/U(s).

null

9.Given the System of Figure 9, find the transfer function X2(s)/U(s). Consider k1= k2=6 N/m, b1= b2= b3=2 N-s/m, m1= m2= m3=4 Kg. Illustrate the use of Matlab and linear algebra.

null

10. Given the System of Figure 10, find the transfer functions Y1(s)/U(s) and Y2(s)/U(s). Consider k1= k2=2 N/m, b=1 N-s/m, m1= m2= 2 Kg. (The same exercise is solved with state variables in the exercise 11)

null

11. Find the state-space representation of the system of the previous exercise, Figure 10, taking y2(t) as the output and u(t) as the input. Transform the state-space representation obtained in the transfer function Y2(s)/U(s). Consider k1= k2=2 N/m, b=1 N-s/m, m1= m2= 2 Kg.

Contact:

  • WhatsApp: +34 633129287
  • dademuchconnection@gmail.com

Immediate attention!!..

Mass-spring-damper system. Problems solved. Catalog 1

In this PDF guide, the Transfer Function of the exercises that are most commonly used in the mass-spring-damper system classes that are in turn part of control systems, signals and systems, analysis of electrical networks with DC motor, is determined. electronic systems in mechatronics, etc. It is a good resource to also learn how to obtain the block diagram of the system, or the representation in state variables. Request via email – WhatsApp. Payment is provided by PayPal, Credit or debit card. Cost: € 5

€5,00

You may be also interested in:

Written by Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – Twitter: @dademuch

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Jaén – España: Tlf. 633129287

Caracas, Quito, Guayaquil, Lima, México, Bogotá, Cochabamba, Santiago.

WhatsApp: +34 633129287

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Análisis de sistemas de control, Diagramas de bloques

Sistema de control a lazo abierto – Electromecánico.

Un sistema de control puede estar a lazo abierto o a lazo cerrado. Para entender esta diferencia debemos poner atención al efecto que tiene la salida en la acción de control del sistema (Ogata, 1998). Si la salida influye en la acción de control, el sistema está a lazo cerrado. En cambio, si la salida no afecta la acción de control, estamos en presencia de un sistema de control a lazo abierto.

La variable controlada es la cantidad o condición que se mide o se controla. La variable manipulada, o variable de control, es la cantidad o condición que el controlador modifica para afectar el valor de la variable controlada.

Para entender mejor el concepto de lazo abierto, considere el siguiente esquema, el cual representa a un componente muy frecuente y básico en todo sistema electromecánico, un Potenciómetro:

null
Figura 1

En la práctica el funcionamiento del sistema de la Figura 1 es simple. La posición B de la aguja (variable de control) depende del desplazamiento angular Θi(t)  (entrada del sistema). La posición de la aguja determina un voltaje Vo(t) (salida del sistema, variable controlada) que puede tener un valor entre +50 y -50 voltios. En este sistema, la salida no afecta la acción de control, que es el movimiento mecánico de la manecilla (controlador). Por lo tanto, se trata de un sistema a lazo abierto, el cual podemos representar mediante el siguiente diagrama de bloques:

null
Figura 2

Si quisiéramos configurar el sistema de la Figura 2 como un sistema a lazo cerrado, tendríamos que medir la salida, en primer lugar, y compararla con la señal de referencia, en segundo lugar, de manera tal que un Controlador ejecute la acción controladora en base al resultado de dicha comparación. Este proceso podría ser representado mediante el siguiente diagrama:

null
Figure 3

Para una introducción ver: Diagrama de Bloques – Ingeniería de Control

Con bastante frecuencia, el Potenciómetro de la Figura 1 es el componente que activa un Motor DC como se muestra en el siguiente ejemplo:

null
Figura 4

El sistema de la Figura 4 es otro ejemplo de  sistema electromecánico a lazo abierto, que involucra una mayor cantidad de componentes entre los que resaltan el uso de un Motor DC y una Caja de Engranajes que permite trasformar un movimiento rotacional en un desplazamiento traslacional, pero en el cual la salida no influye a la acción controladora.

El siguiente sistema, en cambio, tiene también un Potenciómetro que mide el desplazamiento a la salida y ésta medida influye sobre la acción de control:

null
Figura 5

El sistema de la Figura 5 es un sistema electromecánico a lazo cerrado que compara el voltaje de salida c con el voltaje de entrada r. Esta comparación se manifiesta como una diferencia de voltaje ev=r-c que luego alimenta un Amplificador Diferencial, que a su vez activa un Motor DC que, a través de un sistema de Engranajes, mueve el Potenciómetro c. Este proceso se repite hasta que ev=0, es decir, hasta que r=c. Dicho de otro modo, el sistema busca que la salida iguale a la entrada, por lo que a este sistema se le denomina sistema automático seguidor de la entrada, Sistema de Control de Posición o Servosistema.

Cuando un Motor DC forma parte de un Servosistema, se le denomina ServoMotor. El Sistema de Control de Posición es uno de los mecanismos esenciales más utilizados en la ingeniería, de allí su gran importancia. Si quieres saber más sobre este proceso básico, ve a Servomotores – Sistema de control de posición.

 

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

También puedes consultar:

Fuentes:

  1. Control Systems Engineering, Nise
  2. Sistemas de Control Automatico Benjamin C Kuo
  3. Modern_Control_Engineering, Ogata 4t
  4. Libro Rashid – Power Electronic Handbook p 663-666
  5. Getty Images

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Some content on this page was disabled on 3 April, 2020 as a result of a DMCA takedown notice from Pearson Education, Inc.. You can learn more about the DMCA here:

https://en.support.wordpress.com/copyright-and-the-dmca/

Análisis de sistemas de control, Función de Transferencia, Ingeniería Electrónica

Función de Transferencia de Sistema Electrónico. Problemas resueltos. Catálogo 7

La función de transferencia de un Sistema Electrónico. 

En esta guía PDF  se determina la Función de Transferencia de los ejercicios que más se utilizan en las clases de sistemas electrónicos que forman parte a su vez de sistemas de control, señales y sistemas, análisis de redes eléctricas con motor DC, sistemas electrónicos en mecatrónica, etc. Es un buen recurso para aprender también a obtener el diagrama de bloques del sistema, o la representación en variables de estado. Solicitar vía email – WhatsApp. Se facilita pago por PayPal, Tarjeta de crédito o débito. Costo: 5 €.

A continuación, los enunciados de problemas resueltos en esta guía.

1. Hallar la función de transferencia del Sistema Electrónico mostrado en la Figura 49. Considerar R1=500 K, R2= 100 K , C1=2 F, C2=2  

null

2. Hallar la función de transferencia  del Sistema mostrado en la Figura 51. Considerar R1=400 K, R2= 600 K , R3=600 K, R4= 110 K , C1=4 F, C2=4 

null

3. Hallar la función de transferencia del Sistema mostrado en la Figura 52.

null

4. Hallar la función de transferencia del Sistema mostrado en la Figura 53.

null

5. Hallar la función de transferencia del Sistema mostrado en la Figura 54.

null

6. Hallar la función de transferencia del Sistema Electrónico mostrado en la Figura 78. Considerar R1=1 K, C=2 Determinar el coeficiente de amortiguamiento y la frecuencia natural del circuito.

null

7. Hallar la función de transferencia del Sistema mostrado en la Figura 64. Realizar el diagrama de bloques del sistema.

null

Contacto a través de:

  • WhatsApp: +34 633129287
  • dademuchconnection@gmail.com

Te brindo toda la asesoría que necesites!! … Prof. Larry. Se hacen trabajos, ejercicios, clases online, talleres, laboratorios, Academic Paper, Tesis, Monografías.

Resuelvo problemas y ejercicios en dos horas…atención inmediata!!..

Puedes consultar también:

 

Elaborado por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – Twitter: @dademuch

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Jaén – España: Tlf. 633129287

Caracas, Quito, Guayaquil, Lima, México, Bogotá, Cochabamba, Santiago.

WhatsApp: +34 633129287

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com