Sin categoría

Obtener la función de transferencia de un sistema a partir de su curva de respuesta real

Si ya se dispone de una gráfica de la señal de salida del sistema ante una entrada escalón, es posible obtener la representación analítica del sistema en forma de función de transferencia G(s). Veremos a continuación varios métodos según sea el caso.

Sistema de primer orden

Obtención de G(s) a partir de la curva de la señal de salida en respuesta a un escalón.

Supongamos que la curva de respuesta real de un sistema al escalón unitario es la siguiente:

Figura 1. Respuesta real al escalón unitario de un sistema de primer orden.

En este caso, disponemos de dos métodos:

  1. Método de la constante de tiempo τ: Debemos aquí considerar que la curva alcanza el 63,212% del valor final cuando ha transcurrido un tiempo t=τ. En la gráfica observamos que el valor final de la curva y es 1. En otras palabras, y(∞)=1. Por lo tanto, debemos identificar sobre la gráfica el momento en que la curva alcanza el valor 0.63212. Es decir, el tiempo t para que y(t)=0.63212. En ese instante se cumple que t=τ. Se procede entonces a trazar una recta paralela al eje de las abscisas (eje t en este caso) que corresponda al 63,212% del valor final de y(t). En ese punto se traza ahora una recta paralela al eje de las ordenadas (eje y en este caso) hasta cortar el eje t. Este último punto de corte es el valor de τ.
  • Método de la pendiente máxima: Se traza una recta con pendiente máxima desde el origen sobre la curva de respuesta, hasta que intercepta la recta de prolongación que coincide con el valor final (y(∞)=1 en este caso). En este punto se traza ahora una recta paralela al eje de las ordenadas (eje y en este caso) hasta cortar el eje t. Este último punto de corte es el valor de τ. Es de utilidad Notar que la recta paralela al eje de las ordenadas corta la curva cuando su valor es del 63,212% del valor final.

De acuerdo con la gráfica, el valor de τ=2s  y la ganancia estática k=1(y(∞)=1), sustituimos ambos valores en la ecuación prototipo para un sistema de primer orden y obtenemos la función de transferencia G(s) del sistema (de la planta):

Comprobamos este resultado con el simulador de Matlab y vemos que el resultado se corresponde con el enunciado:

G=tf([0.5],[1 0.5]);
step(G)

Figura 2. Simulación en Matlab de al respuesta al escalón unitario de G(s)=0.5/(s+0.5)
Sistema de grado superior

Una forma de determinar la función de transferencia de un sistema de grado mayor o igual a 2, a partir de la gráfica de la curva real de su respuesta al escalón, es considerar que el sistema de grado n está formado por n subsistemas de primer grado interconectados en serie. Es decir, la función de transferencia de un sistema de grado mayor o igual a 2, se puede aproximar mediante la ecuación:

En la gráfica siguiente podemos observar respuesta críticamente amortiguadas de sistemas de grado 2 hasta grado 7:

Respuestas normalizadas críticamente amortiguadas para entradas escalón unitario de sistemas de grado 2 a grado 7.

En la gráfica anterior se observa la semejanza entre la respuesta del sistema de segundo grado con respecto a la respuesta de sistemas de grados superiores, salvo que conforme se incrementa el grado del sistema, la respuesta tiende a retrasarse cada vez más (tiempo de atraso) en su despegue para empezar a alcanzar su valor final (tiempo de crecimiento exponencial).

Definimos los parámetros:

Tiempo de atraso Ta y tiempo de crecimiento exponencial Tce para un sistema críticamente amortiguado de grado n.

En la gráfica anterior, una vez medidos los valores de Ta y Tce, nos interesa saber el valor del cociente Tce/Ta. Gracias a la siguiente tabla podemos relacionar el valor del cociente Tce/Ta con el orden del sistema y además hallar el valor de la constante de tiempo:

Aproximación de la constante de tiempo de un sistema críticamente amortiguado de grado n.

Al aplicar el método, lo conveniente es simular el resultado, para luego ajustar los valores obtenidos para la ganancia y la constante de tiempo (en el caso de un sistema de primer grado) hasta alcanzar un resultado óptimo.

Fuente:

  1. Ingeniería de Control Moderno 3ra. Ed. Katsuhiro Ogata.
  2. Control Systems Engineering, Nise

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Valladolid, Quito, Guayaquil, Jaén, Villafranca de Ordizia. telf – +34633129287

WhatsApp: +34633129287

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Sin categoría

Método Ziegler-Nichols – Ajuste experimental de un PID

En primer lugar utilizamos como referencia el esquema básico de un sistema de control con un Controlador Proporcional-Integral-Derivativo (PID):

Esquema de Controlador PID

Para asignar valores a los parámetros del controlador PID sin conocer la función de transferencia de la planta que se desea controlar, se han propuesto una serie de tablas que utilizan varios parámetros que se obtienen de forma experimental. El método más utilizado es el que propusieron John Ziegler y Nataniel Nichols para el control de servomecanismos hidráulicos en baterías antiaéreas empleadas en la segunda guerra mundial.

El ajuste de Ziegler-Nichols propone unos parámetros para el PID de forma que el sistema controlado posea un buen rechazo a las perturbaciones que se puedan introducir en el sistema. En muchos procesos industriales un buen rechazo a las perturbaciones es mucho más interesante que un buen seguimiento a la referencia.

Existen dos formas de ajuste. Una emplea los parámetros a y L de la respuesta de la planta ante una entrada escalón (Basado en la respuesta transitoria experimental en lazo abierto de la planta a una entrada escalón). Otra forma emplea los parámetros de ganancia crítica KCR y período de oscilación crítico TCR (Basado en la respuesta oscilatoria experimental en lazo cerrado de la planta). Los valores de los parámetros del PID se obtienen con la siguiente tabla:

Tabla 1. Cuadro de ajuste del PID por el método Z-N
Método basado en los parámetros a y L:  

En la figura siguiente se muestra como obtener los parámetros a y L de la respuesta de la planta ante una entrada escalón unidad:

Respuesta de la planta a un escalón unitario.

Este método se puede utilizar Si la planta:

  • No posee integradores;
  • Polos dominantes complejos conjugados;
  • La respuesta no tiene oscilaciones;
  • Posee un retardo de tal forma que se forma una “s”.

Se obtiene de forma experimental la respuesta de la planta a una entrada escalón, y si cumple las condiciones anteriores, pueden obtenerse los parámetros del controlador PID mediante el método mencionado.

Figura 1. Curva de reacción y recta tangente. Parámetros L y T.

Existe variedad de notación. Alternativamente, para aplicar el criterio Ziegler-Nichols a la curva de reacción de la planta ante el escalón unitario, podemos considerar la Tabla 2, que utiliza los parámetros Ta (tiempo de atraso) y m (pendiente máxima) para la modulación de los controladores P, PI y PID:

Tabla 2. Cuadro de ajuste del PID por el método Z-N
Figura 2. Curva de reacción de la planta ante entrada escalón unitario. Parámetros Ta y m.

En el siguiente ejemplo, lograremos los siguientes objetivos:

  1. De acuerdo con la siguiente gráfica:
Figura 3. Curva de reacción de la planta ante entrada escalón unitario.
  • Obtener la Función de Transferencia G(s) de la planta a partir de la curva real de respuesta al escalón por método de aproximación analítica.
  • Sintonizar los controladores P, PI, PID, mediante los dos métodos de Ziegler-Nichols:
    • Curva de reacción (respuesta de planta ante una entrada escalón);
    • Utilizando la función de transferencia de la planta;
    • Ganancia crítica (o ganancia máxima).
  • Simulación en Matlab de cada métodos. Análisis de la respuesta del sistema al aplicar los controladores diseñados.
  • El costo del ejercicio incluye:
    • Solución paso a paso en PDF;
    • Una hora de clase online para explicar y asesorar en cuanto a la teoría y solución de este u otros ejercicios parecidos.

En construcción…

Fuente:

  1. Ingeniería de Control Moderno 3ra. Ed. Katsuhiro Ogata.
  2. Control Systems Engineering, Nise

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Valladolid, Quito, Guayaquil, Jaén, Villafranca de Ordizia. telf – +34633129287

WhatsApp: +34633129287

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Sin categoría

Diagrama de polos y ceros de la Transformada Z

Sea x[n] una señal analógica y sea X(z)  su transformada z.

Un cero de X(z) es todo valor de z para el que la expresión de X(z) es igual a 0.

Un polo de X(z) es todo valor de z para el que la expresión de X(z) es igual a infinito.

El diagrama de polos y ceros de X(z) es una representación gráfica sobre el plano z de los polos y ceros de X(z), en la cual:

  • La ubicación de un cero en plano z se simboliza mediante un círculo (O).
  • La coincidencia de dos o más ceros en la misma ubicación (ci= cj,con i≠j) se simboliza mediante un superíndice añadido al círculo (O2, O3,…, ON).
  • La ubicación de un polo en el plano z se simboliza mediante una cruz (×).
  • La coincidencia de dos o más polos en la misma ubicación (pi= pj,con i≠j) se simboliza mediante un superíndice añadido a la cruz (×2, ×3,…, ×N).

Ejemplo:

  1. Calcular ceros y polos y representar gráficamente su diagrama de polos y ceros. Considere la señal x[n]:

A partir de la ecuación:

Podemos señalar que la transformada Z de x[n] es:

Para la convergencia de X(Z) se requiere que:

En consecuencia, la región de convergencia es el rango de valores de z ara el cual:

Entonces, añadiendo la información relativa a la ROC, la transformada Z de x[n] es:

Entonces hablamos del siguiente par transformado:

Al tratarse de una señal racional, el cálculo de los polo y ceros de X(Z) pasa por evaluar los valores de z que o bien anulan o bien hacen tender a infinito al numerador, por un lado, y al denominador, por otro. Así pues:

  • Un cero de un X(Z) racional se corresponde o bien con un cero del numerador o bien con un valor de z para el que el denominador tienda a infinito.
  • Un polo de un X(Z) racional se corresponde o bien con un cero del denominador o bien con un valor de z para el que el numerador tienda a infinito.

En el caso de la X(Z) del ejemplo, la función presenta un cero en el origen (z=0), mientras presenta un polo en z=a. Para la representación gráfica se asume arbitrariamente que a es una constante real positiva, de modo tal que:

Entonces el diagrama de X(Z) es:

Es importante tener presente que la ROC de una transformada z y los ceros y los polos de la misma están íntimamente relacionadas entre sí. Por ello, es de gran utilidad la representación conjunta del diagrama de polos y ceros y la ROC de X(Z):

ROC de la transformada z de una señal infinita orientada a la derecha que presenta un
cero en z = 0 y un polo en z = a

Este ejemplo ilustra bien algunos conceptos a tomar en cuenta siempre que se calcula una Transformada z:

  • Que un cero sea un punto en que la transformada sea igual a cero no quiere decir que los ceros de una transformada pertenezcan a su ROC
  • Posiblemente habrá uno o más polos situados en las circunferencias fronteras que delimitan la ROC. En todo caso, es seguro que nunca habrá  polos en el interior de la ROC.
  • Una vez calculada la transformada, conviene siempre comprobar si los valores particulares z=0 y z→∞, pertenecen o no a la ROC.

Teoría completa:

Elaborado por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – Twitter: @dademuch

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Jaén – España: Tlf. 633129287

Caracas, Valladolid, Quito, Guayaquil, Jaén, Ordizia.

WhatsApp: +34 633129287

Twitter: @dademuch

FACEBOO DademuchConnection

email: dademuchconnection@gmail.com

Sin categoría

First-Order Open-Loop and Closed-Loop Systems

An open loop control system for a first order system allows us to increase or decrease the static gain k of the system, but it does not allow us to change its time constant T, which represents a great limitation for the design of a system that fulfill specific tasks where, perhaps, a faster response is necessary (for a review of the k and T parameters see Sistema de primer orden). In contrast, with a closed-loop control system for a first-order system, we can vary both parameters. Let’s see it by simulating the response of the system to the unit step input.

Let us assume both cases, represented by the following Block Diagrams for a control system consisting of a controller and a plant. The transfer function (FT) of the first order plant is Gp(s), while the FT of the adjustable proportional controller isGc(s):

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-38.png

(See: Diagrama de Bloques)

Let’s see what happens considering the following values:

First-Order Open-Loop System

For the open-loop system it is satisfied that:

Atención: No confundir la K del controlador con la k (ganancia estática) del sistema (ver Sistema de primer orden).

The following Matlab script shows how the response (output) of the open-loop system to the unit step input varies as the gain of the K controller acquires the following values:

G=tf([2.9276],[1 0.2336]);
K=[1 2 3 4];
G1=K(1)*G; G2=K(2)*G;
G3=K(3)*G; G4=K(4)*G;
step(G1,G2,G3,G4)

legend(‘K=1′,’K=2′,’K=3′,’K=4’)

Gráfica 1. Respuesta en el tiempo del sistema de primer orden a lazo abierto, a la entrada escalón unitario para diferentes valores de K del controlador proporcional.

In graph 1 we can see how the output of the system varies as the gain K of the controller changes. We can see that the static gain k of the first order system increases as the K of the controller increases. However, in each case, the time constant T remains constant. According to the First-Order System, the value of the time constant T is equal to;

In graph 2 we can see that the constant T, the time each system reaches 63.2% of its final value, remains constant for the 4 values of K considered:

Gráfica 2. El valor de la constante de tiempo se mantiene constante para un sistema de primer orden a lazo abierto a medida que se varía la ganancia K del controlador proporcional.

Graph 3 allows us to see that the static gain k of each system as the gain K of the proportional controller increases is:

Gráfica 3. La ganancia estática para un sistema de primer orden a lazo abierto a medida que se varía la ganancia K del controlador proporcional.

Most simple systems are zero, first, or second order. But then these simple systems interact with each other, generating higher order systems (third order onwards). An example is a solenoid, considered as a hybrid (electromechanical) system, represented by the following block diagram, where the series connection of three systems of first degree (electrical part), zero degree (transducer) and second degree ( mechanical part), respectively. It is also a good example of where in practice, we can find a first order open loop system: Definición de Sistema Electromecánico

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-36.png
First-Order Closed-Loop System

For the closed loop system it is satisfied that:

La imagen tiene un atributo ALT vacío; su nombre de archivo es image.png

The following Matlab script shows how the response (output) of the closed-loop system to the unit step input varies as the gain of the K controller acquires the values indicated above:

G=tf([2.9276],[1 0.2336]); K=[1 2 3 4]; G1=K(1)*G; G2=K(2)*G; G3=K(3)*G; G4=K(4)*G;

sys1=feedback(G1,1);
sys2=feedback(G2,1);
sys3=feedback(G3,1);
sys4=feedback(G4,1);
step(sys1,sys2,sys3,sys4)
legend(‘K1=1′,’K2=2′,’K3=3′,’K4=4’)

Gráfica 4. Respuesta en el tiempo del sistema de primer orden a lazo cerrado, a la entrada escalón unitario para diferentes valores de K del controlador proporcional.

Graph 4 shows how the system is faster as the gain K of the controller increases. That is, the time constant T of the closed-loop first-order system decreases as the gain K of the controller increases.:

The above results show that for the closed-loop system, we can use the gain K of the proportional controller to adjust the system in such a way that it responds at a given speed. Observe that the pole of the system moves to the left of the real axis as K increases.

sys=feedback(G1,1);
rlocus(sys)

Gráfica 5. El Lugar de las raíces para un sistema de primer orden a lazo cerrado. El polo del sistema se desplaza hacia la izquierda del eje real a medida que aumenta la ganancia K del controlador proporcional.

Graph 6 shows the constant T of each system, the time each system reaches 63.2% of its final value:

Gráfica 6. Para un sistema de primer orden a lazo cerrado el valor de la constante de tiempo disminuye a medida que aumenta la ganancia K del controlador proporcional.

Sources:

  • Introducción a los sistemas de control con Matlab – Ricardo Gaviño
  • Control Systems Engineering, Nise
  • Sistemas de Control Automatico Benjamin C Kuo
  • Modern_Control_Engineering, Ogata 4t

Made by Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – Twitter: @dademuch

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Jaén – España: Tlf. 633129287

Caracas, Valladolid, Quito, Guayaquil, Jaén, Villafranca de Ordizia.

WhatsApp: +34 633129287

Twitter: @dademuch

FACEBOO DademuchConnection

email: dademuchconnection@gmail.com

Sin categoría

Sistema de primer orden a lazo abierto y a lazo cerrado – Matlab Simulation

Un sistema de control a lazo abierto para un sistema de primer orden, nos permite aumentar o disminuir la ganancia estática k del sistema, pero no nos permite cambiar su constante de tiempo T, lo que representa una gran limitación para el diseño de un sistema que cumpla con tareas específicas donde, quizás, sea necesario una respuesta más rápida (para un repaso de los parámetros k y T ver Sistema de primer orden). En cambio, con un sistema de control a lazo cerrado para un sistema de primer orden, podemos variar ambos parámetros. Vamos a verlo mediante una simulación de la respuesta del sistema a la entrada escalón unitario.

Supongamos ambos casos, representados por los siguientes Diagramas de Bloques para un sistema de control constituidos por un controlador y una planta. La función de transferencia (FT) de la planta de primer orden es Gp(s), mientras que la FT del controlador proporcional ajustable es Gc(s):

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-38.png

(Para un repaso de Diagramas de Bloques ver: Diagrama de Bloques)

Veamos que pasa considerando los siguientes valores:

Sistema de primer orden a lazo abierto

Para el sistema a lazo abierto se cumple que:

Atención: No confundir la K del controlador con la k (ganancia estática) del sistema (ver Sistema de primer orden).

El siguiente script en Matlab muestra como varía la respuesta (salida) del sistema en lazo abierto a la entrada escalón unitario a medida que la ganancia del controlador K adquiere los siguientes valores:

G=tf([2.9276],[1 0.2336]);
K=[1 2 3 4];
G1=K(1)*G; G2=K(2)*G;
G3=K(3)*G; G4=K(4)*G;
step(G1,G2,G3,G4)

legend(‘K=1′,’K=2′,’K=3′,’K=4’)

Gráfica 1. Respuesta en el tiempo del sistema de primer orden a lazo abierto, a la entrada escalón unitario para diferentes valores de K del controlador proporcional.

En la gráfica 1 podemos observar como varía la salida del sistema a medida que cambia la ganancia K del controlador. Podemos ver que aumenta la ganancia estática k del sistema de primer orden a medida que aumenta la K del controlador. Sin embargo, en cada caso, la constante de tiempo T se mantiene constante. De acuerdo con Sistema de primer orden, el valor de la constante de tiempo T es igual a:

En la gráfica 2 podemos comprobar que la constante T, el tiempo en que cada sistema alcanza el 63,2% de su valor final, se mantiene constante para los 4 valores de K considerados:

Gráfica 2. El valor de la constante de tiempo se mantiene constante para un sistema de primer orden a lazo abierto a medida que se varía la ganancia K del controlador proporcional.

La gráfica 3 nos permite ver que la ganancia estática k de cada sistema a medida que aumenta la ganancia K del controlador proporcional es:

Gráfica 3. La ganancia estática para un sistema de primer orden a lazo abierto a medida que se varía la ganancia K del controlador proporcional.

La mayoría de los sistemas sencillos son de cero, primer o segundo orden. Pero luego dichos sistemas sencillos interactúan entre ellos, generando sistemas de orden superior (de tercer orden en adelante). Un ejemplo es un solenoide, considerado como un sistema híbrido (electromecánico), representado mediante el siguiente diagrama de bloques, donde se muestra la conexión en serie de tres sistemas de primer grado (parte eléctrica), cero grado (transductor) y segundo grado (parte mecánica), respectivamente. Es un buen ejemplo también de dónde en la práctica, podemos encontrar un sistema de primer orden a lazo abierto: Definición de Sistema Electromecánico

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-36.png
Sistema de primer orden a lazo cerrado

Para el sistema a lazo cerrado se cumple que:

El siguiente script en Matlab muestra como varía la respuesta (salida) del sistema en lazo cerrado a la entrada escalón unitario a medida que la ganancia del controlador K adquiere los valores antes señalados:

G=tf([2.9276],[1 0.2336]); K=[1 2 3 4]; G1=K(1)*G; G2=K(2)*G; G3=K(3)*G; G4=K(4)*G;

sys1=feedback(G1,1);
sys2=feedback(G2,1);
sys3=feedback(G3,1);
sys4=feedback(G4,1);
step(sys1,sys2,sys3,sys4)
legend(‘K1=1′,’K2=2′,’K3=3′,’K4=4’)

Gráfica 4. Respuesta en el tiempo del sistema de primer orden a lazo cerrado, a la entrada escalón unitario para diferentes valores de K del controlador proporcional.

La gráfica 4 muestra como el sistema es más rápido a medida que la ganancia K del controlador aumenta. Es decir, la constante de tiempo T del sistema de primer orden en lazo cerrado, disminuye a medida que la ganancia K del controlador aumenta:

Los resultados anteriores muestran que para el sistema a lazo cerrado, podemos utilizar la ganancia K del controlador proporcional para ajustar el sistema de tal manera que responda a una velocidad determinada. Observar que el polo del sistema se va desplazando hacia la izquierda del eje real a medida que aumenta K.

sys=feedback(G1,1);
rlocus(sys)

Gráfica 5. El Lugar de las raíces para un sistema de primer orden a lazo cerrado. El polo del sistema se desplaza hacia la izquierda del eje real a medida que aumenta la ganancia K del controlador proporcional.

La gráfica 6 muestra la constante T de cada sistema, el tiempo en que cada sistema alcanza el 63,2% de su valor final:

Gráfica 6. Para un sistema de primer orden a lazo cerrado el valor de la constante de tiempo disminuye a medida que aumenta la ganancia K del controlador proporcional.

Fuentes:

  • Introducción a los sistemas de control con Matlab – Ricardo Gaviño
  • Control Systems Engineering, Nise
  • Sistemas de Control Automatico Benjamin C Kuo
  • Modern_Control_Engineering, Ogata 4t

Elaborado por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – Twitter: @dademuch

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Jaén – España: Tlf. 633129287

Caracas, Valladolid, Quito, Guayaquil, Jaén, Villafranca de Ordizia.

WhatsApp: +34 633129287

Twitter: @dademuch

FACEBOO DademuchConnection

email: dademuchconnection@gmail.com

Sin categoría

Error de un sistema de control en régimen permanente

El error entrada-salida e(t) y la señal de error ε(t), son los conceptos más utilizados para analizar el error en régimen permanente de un sistema de control prototipo como el que se muestra en la Figura 1:

Figura 1. Sistema de control prototipo.

El error entrada-salida e(t): Diferencia entre la señal de entrada y la señal de salida con los niveles ajustados a la entrada. Este ajuste de los rangos de señal a los rangos de la entrada equivale a multiplicar la señal de salida por la ganancia estática de la realimentación. Por lo tanto:

Señal de error ε(t): Es la señal que actúa sobre el sistema en cadena directa:

Si el sistema es estable, el error entrada-salida y la señal de error tendrán, ante una entrada determinada, un valor en régimen permanente que se podrá obtener por el teorema del valor final:

Si la función de transferencia H(s) es constante, entonces H(s)=H(0) con lo que la señal de error entrada-salida E(s) y la señal de error ε(s) coinciden. Se definen entonces las constantes de error de posición, velocidad y aceleración:

Dando como resultado los siguientes errores para cada entrada:

Se define el tipo de un sistema realimentado como el número de polos en el origen del sistema en cadena abierta G(s)H(s). Para sistemas con realimentación constante se cumple:

Elaborado por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – Twitter: @dademuch

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Jaén – España: Tlf. 633129287

Caracas, Valladolid, Quito, Guayaquil, Jaén, Villafranca de Ordizia.

WhatsApp: +34 633129287

Twitter: @dademuch

FACEBOO DademuchConnection

email: dademuchconnection@gmail.com

Sin categoría

El pulso rectangular en Matlab

Un pulso rectangular aislado de amplitud A y duración T se representa matemáticamente como:

Dónde:

El siguiente código simula un pulso rectangular con un ancho de pulso deseado y el gráfico resultante:

fs=500; %sampling frequency
T=0.2; %width of the rectangular pulse in seconds
t=0.5:1/fs:0.5; %time base
g=(t>-T/2).(t(t==T/2)+0.5(t==-T/2); g=(t>-T/2).(t<T/2)+0.5(t==T/2)+0.5(t==-T/2); %rectpuls(t,T); %using inbuilt function (signal proc toolbox)
plot(t,g); title([‘Pulso Rectangular de ancho=’,num2str(T),’s’])

Pulso Rectangular de ancho 0.2 segundos.

Elaborado por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – Twitter: @dademuch

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Jaén – España: Tlf. 633129287

Caracas, Valladolid, Quito, Guayaquil, Jaén, Villafranca de Ordizia.

WhatsApp: +34 633129287

Twitter: @dademuch

FACEBOO DademuchConnection

email: dademuchconnection@gmail.com

Sin categoría

Problema resuelto de Circuito C.A. y aparatos de medición – Régimen estacionario sinusoidal

El circuito de la Figura siguiente está alimentado por un generador de c.a. v(t)

Los aparatos de medida dan los siguientes resultados:

Además, se sabe que Z1 es completamente inductiva, Zaes una impedancia capacitiva con fase -70°, Z2 es una impedancia completamente resistiva y Zb es una impedancia con componente inductivo y resistivo.

Se pide:

  1. La lectura del amperímetro IT.
  2. La lectura del voltímetro V2.
  3. La lectura del vatímetro P1.

Solución:

  1. Lectura del amperímetro IT. Para hallar IT utilizamos la ley de corrientes de Kirchhoff y la siguiente relación:

Vamos a determinar Ia en primer lugar. Sabemos que la impedancia Za es capacitiva, con fase -70°. Conviene definir Va como el voltaje de referencia. Además, en el diagrama del circuito vemos claramente que Ia=Va/Za  y además Va = Vb. Entonces:

En consecuencia:

Además es importante saber que:

Para determinar Ib, determinaremos el valor de la fase de la impedancia Zb para luego aplicar:

Calcularemos la fase de la impedancia Zb mediante las siguientes fórmulas:

La potencia aparente Sb relativa a la impedancia Zb es la siguiente:

Luego:

Para calcular Pb, utilizamos la potencia medida por P2, que es la potencia activa consumida por los componentes  resistivos de las impedancias Za y Zb:

Este resultado nos permite determinar Qb:

Con estos datos, la impedancia Zb queda definida como:

En consecuencia:

Recordamos que:

Por lo tanto:

De donde:

En conclusión, la lectura del amperímetro es IT =28.09 A.

2. Lectura del voltímetro V2. Podemos determinar V2 mediante la siguiente fórmula:

Como ya conocemos Vb vamos a calcular primero a V1, del cual gracias a los datos del problema ya conocemos su módulo:

Por la impedancia Z1 circula IT. Podemos utilizar este hecho para determinar la fase de V1, ya que en una impedancia puramente inductiva, la corriente se retrasa con respecto al voltaje en 90°. Por lo tanto:

Para determinar el módulo de V2, aprovechamos el hecho de que la impedancia Z2 es puramente resistiva. Esto significa que V2 está en fase con la corriente IT la cual atraviesa Z2. Es decir:

De los datos del problema sabemos que:

De esta manera:

Considerando el módulo de la expresión anterior, obtenemos que:

Simplificando:

De donde:

En conclusión, la lectura del voltímetro es V= 338.12 V

3. Lectura del potenciómetro P1: El amperímetro mide el consumo de potencia activa en la red. A parte de la potencia medida por P2, R2 es la única resistencia que consume potencia. Por tanto:

En conclusión, la lectura del potenciómetro es P= 16698 W.

Te puede interesar:

Elaborado por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – Twitter: @dademuch

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Jaén – España: Tlf. 633129287

Caracas, Valladolid, Quito, Guayaquil, Jaén, Villafranca de Ordizia.

WhatsApp: +34 633129287

Twitter: @dademuch

FACEBOO DademuchConnection

Sin categoría

Transformada de Laplace – Problemas resueltos – Catálogo 12

La siguiente guía contiene los procedimientos estándar de la cátedra de señales y sistemas para determinar la transformada de Laplace y su ROC. Cada problema tiene un costo de 8.5 euros. La Guía completa tiene un valor de 16.5 euros. Se facilita pago a través de Paypal.

Problema 1. Dada las señales x(t), y(t):

Se pide:

  1. Hallar la transformada de Laplace de la señal x(t) a partir de la definición de la transformada, incluyendo su ROC.
  2. Hallar la transformada de Laplace de la señal y(t) aplicando las propiedades de la transformada al resultado obtenido en el apartado anterior.

Problema 2. Dado el sistema LTI con respuesta impulsional y señal de entrada h(t), x(t):

  1. Determinar la transformada de Laplace de h(t) y x(t)  a partir de la definición de la transformada.
  2. Determinar la transformada de Laplace de la señal de salida Y(s) a partir de la propiedad de convolución de la transformada.

Problema 3. Obtenga la Transformada de Laplace de la siguiente señal, indicando la región de convergencia.

Problema 4. en construcción:

Método de pago: Paypal

Puedes consultar también:

Elaborado por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – Twitter: @dademuch

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Jaén – España: Tlf. 633129287

Caracas, Valladolid, Quito, Guayaquil, Jaén, Villafranca de Ordizia.

WhatsApp: +34 633129287

Twitter: @dademuch

FACEBOO DademuchConnection

email: dademuchconnection@gmail.com

Sin categoría

The Z-Transform

The z-transform is an extension of the DTFT (The Discrete-Time Fourier Transform) to overcome two shortcomings of the DTFT approach: First, there are many important signals for which the DTFT does not exist. Take the case of the step u[n]. Second, the transient response of a system due to initial conditions or due to changing inputs cannot be computed using the DTFT approach.

In consequence, the bilateral version of the z-transform provides another domain in which a larger class of sequences and systems can be analyzed. Meanwhile, the unilateral version of the z-transform can be used to obtain the response of systems with initial conditions or changing inputs.  

THE BILATERAL Z-TRANSFORM

The z-transform of an arbitrary sequence x[n] is given by:

where z is a complex variable called the complex frequency:

The set  of values for which X[z] exists is called the region of convergence (ROC) and is given by:

For some non-negative numbers Rx- and Rx+. Since the ROC defined in terms of the module of z, the shape of the ROC is an open ring, as show in Figure 1:

Figure 1. A general region of convergence.

Another way of defining the ROC is:

null

When:

Hence, the DTFT X[e] may be viewed as a special case of the z-transform X[z].

The inverse z-transform of a complex function X[z] is given by:

where C is a counterclockwise contour encircling the origin and lying in the ROC.  

Example 1. 

Let x1[n] a positive-time sequence:

Then:

Note: in example 1:

That is, has a zero at the origin (z=0) and a pole in z=a.

Summarizing:

Example 1 is s special case of a right-side sequences, defined as a sequence x[n]  that is zero for some n<n0. The ROC of a right-side sequence is always outside of a circle of radius Rx-. In the case of example 1, Rx-=a. If n0 0, then the right-side sequence is also called a casual sequence. Note that if a=1, example 1 is the z-transform of the unit step. That is to say:

Example 2

Let x2[n] a negative-time sequence:

Then:

Example 2 is s special case of a left-side sequences, defined as a sequence x[n]  that is zero for some n>n0. The ROC of a left-side sequence is always inside of a circle of radius Rx+. In the case of example 2, Rx+=b. If n0<=0, then the right-side sequence is also called an anticasual sequence.

Example 3

Let x3[n] a two-side sequence:

Then:

Example 3 is s special case of a two-side sequences. The ROC of a two-side sequence is always an open ring Rx+ <IzI<Rx+ if it exist.

Another considerations about ROC are as follows:

  • The sequences that are zero for n<n1 and n>n2 are called finite-duration sequences. The ROC of such sequences is the entire z-plane. If n1<0, then z=+∞ is not in the ROC. If n2>0, then z=0 is not in the ROC.
  • The ROC cannot include a pole since X(z) converges uniformly in there.
  • There is at least one pole on the boundary of a ROC of a rational X(z).
  • The ROC is one contiguous region; that is, the ROC does not come in pieces.

In digital signal processing, signals are assumed to be casual since almost every digital data is acquired in real time. Therefore, the only ROC of interest is those of the same type of example 1.

Previous: The Discrete-Time Fourier TransformThe Frequency Response of an LTI system

Source:

  • Digital Signal Processing Using Matlab, 3erd ed
  • Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab
  • Oppenheim – Señales y Sistemas
  • Análisis de Sistemas Lineales Asistido con Scilab – Un Enfoque desde la Ingeniería Eléctrica.

You can also be interested in:

Literature review by:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Exercises are solved!!

WhatsApp:  +34633129287  Inmediate Attention!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV Caracas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Valladolid, Quito, Guayaquil, Jaén, Ordizia. 

WhatsApp:  +34633129287   

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com