When the system is linear and discrete time-invariant (LIT system), only one representation stands out as the most useful. It is called The Discrete-Time Fourier Transform (DTFT) and is based on the complex exponential signal set {ejωn}.
THE DISCRETE-TIME FOURIER TRANSFORM (DTFT)
If x[n] is absolutely summable, that is:

Then, the Discrete-Time Fourier Transform of x[n] is given by:

Example 1.
Determine the DTFT of x[n]:

Solution.

Since X[ejω] is a complex-valued function, will have to plots its magnitude and its angle (or the real part and imaginary part) with respect to ω separately to visually describe X[ejω]. Now ω is a real variable between –∞ and +∞, which would mean that we can plot only a part of the X[ejω] function. Using two important properties of the DTFT, we can reduce this domain to the [0,π] interval for real-valued sequences.
The following Matlab script allows us to plot every part of X(ejω) of example 1:
w=[0:1:500]*pi/500; X=exp(i*w)./(exp(i*w)-0.5*ones(1,501));
magX=abs(X);angX=angle(X);
plot(w/pi,magX); grid
xlabel(‘Frequency in pi units’); ylabel(‘Magnitude’);
title(‘Magnitude Part’)
This script yields:

w=[0:1:500]*pi/500; X=exp(i*w)./(exp(i*w)-0.5*ones(1,501));
angX=angle(X);
plot(w/pi,angX); grid
xlabel(‘Frequency in pi units’); ylabel(‘Radians’);
title(‘Angle Part’)
This script yields:

Example 2.
Determine the DTFT of the following finite-duration sequence:

Solution.

Two important properties
The following two properties are essential for DTFT analysis:

Some common DTFT Pairs
Derived from the previous properties, the DTFT of the following sequences, Table 1, are very useful:

Properties of the DTFT
We now present the complete properties of the DTFT in Table 2:


These properties will be of remarkable value for the next application of the DTFT: The z-Transformation.
We early stated that the Fourier Transform representation is the most useful signal representation for LTI systems. That is true due to the following reason:
RESPONSE TO A COMPLEX EXPONENTIALejωon
Let be the input to an LTI system represented by the impulse response h[n]:

Then:

Definition: The FREQUENCY RESPONSE
FREQUENCY RESPONSE: The Discrete-Time Fourier Transform of an impulse response is called The Frequency Response (or The Transfer Function) of an LTI system and is denoted by:

In consequence, if x[n] is the input to an LTI system:

The system can be represented by:

and the output is as follows:
… Next: The Frequency Response of an LTI system
Source:
- Digital Signal Processing Using Matlab, 3erd ed
- Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab
- Oppenheim – Señales y Sistemas
- Análisis de Sistemas Lineales Asistido con Scilab – Un Enfoque desde la Ingeniería Eléctrica.
You can also be interested in:
- What is DSP ?- Digital Signal Processing
- Matlab code for DSP – Introduction
- Elementary sequences in Digital Signal Processing (Versión en Español)
- The Geometric Series in DSP (Versión en Español)
- The sinusoidal function in discrete-time (Versión en Español)
- Convolution in Discrete-Time in Matlab (Versión en Español)
- Solving discrete-time differential equations with Matlab (Versión en Español)
- Digital Filters – Moving Average Filters (Versión en Español)
Literature review by:
Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer
Exercises are solved!!
WhatsApp: +34633129287 Inmediate Attention!!
Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)
Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.
Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV Caracas.
Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.
Contacto: España. +34633129287
Caracas, Quito, Guayaquil, Jaén.
WhatsApp: +34633129287
FACEBOOK: DademuchConnection
email: dademuchconnection@gmail.com
7 comentarios sobre “The Discrete-Time Fourier Transform (DTFT)”