Sin categoría

The sinusoidal function in discrete time – Matlab

Sine waves are important because Fourier´s Theorem states that most signals of practical interest can be decomposed into an infinite sum of sine waves. Discrete-time signals (also called time series) are defined over the set of integers, that is, they are indexed sequences. A discrete-time sine wave is defined by:

Where A is an amplitude and  θo is the phase in radians. Meanwhile, ωo=2πf is the angular frequency and x[n] could be written as:

It is important to understand that the frequency of a discrete-time sinusoid is not uniquely defined. This fundamental ambiguity is a consequence of a basic trigonometric property:

In words, the value of a sinusoid does not change if an integer multiple of is added to its argument. Adding the 2πkn to the argument of equation (1) we get:

Two cases must be distinguished. If k≥-f, the equation (2) is equivalent to a sinusoid with frequency f+k with no change in phase:

On the other hand, if k<-f, equation (3) leads to a negative frequency. To avoid this, we introduce:

We also make use of the property:

In consequence, returning to equations (2) and (3), we obtain a sinusoid of frequency l-f with a reversal in phase:

In conclusion, a discrete-time sinusoid with frequency f is identical to a same-phase sinusoid of frequency f+k, where k is any integer greater than –f, or to a phase-reversed sinusoid of frequency l-f if l>f.

Equation (3) can be expressed more concisely using complex exponential notation:

Because value of a complex exponential does not change if a multiple of is added to its argument, we get:

Equation (5) is equivalent to equation (4). Because of this fundamental frequency ambiguity, we will often implicitly assume that the angular frequency of a discrete-time sinusoid is restricted to the range –π≤ω≤π, or equivalent, that -1/2≤f≤1/2.

The Matlab function cos or sin generates the sinusoidal sequences. For example, for x[n]=3cos(0.1πn+π/3)+2sin(0.5πn), 0n10, we will use the following script:

n=[0:10]; x=3*cos(0.1*pi*n+pi/3)+2*sin(0.5*pi*n);

This script yields:


  • Digital Signal Processing Using Matlab, 3erd ed


Literature review by:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Exercises are solved!!

WhatsApp:  +34633129287  Inmediate Attention!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Jaén. 

WhatsApp:  +34633129287     

Twitter: @dademuch

FACEBOOK: DademuchConnection



Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de

Estás comentando usando tu cuenta de Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s