Sin categoría

La función coseno en tiempo discreto – Matlab

Las señales sinusoidales son muy importantes porque la Transformada de Fourier afirma que la mayoría de las señales de uso práctico se pueden descomponer en una suma infinita de señales sinusoidales. Una señal sinusoidal en el tiempo discreto se representa mediante:

Donde A es la amplitud y θo es la fase en radianes. Por su parte, ωo=2πf es la frecuencia angular y x[n] puede ser escrita como:

Es muy importante entender que la frecuencia de una sinusoide de tiempo discreto no está definida de forma única. Esta ambigüedad fundamental se debe a la siguiente propiedad trigonométrica:

En palabras, el valor de una sinusoide no cambia si un número entero múltiplo de se suma a su argumento. Sumando 2πkn al argumento de la ecuación (1) obtenemos:

Se distinguen dos casos. Si k≥-f, la ecuación (2) es equivalente a una sinusoide con frecuencia f+k sin cambio de fase:

Por otra parte, si k<-f, la ecuación (3) conduce a una frecuencia negativa. Para evita esto, definimos:

Además hacemos uso de la siguiente propiedad:

En consecuencia, volviendo a las ecuaciones (2) y (3), obtenemos una sinusoide de frecuencia l-f con una inversión de fase:

En conclusión: “a discrete-time sinusoid with frequency f is identical to a same-phase sinusoid of frequency f+k, where k is any integer greater than –f, or to a phase-reversed sinusoid of frequency l-f if l>f“.

La ecuación (3) se puede expresar de forma más concisa utilizando la notación exponencial compleja:

Because value of a complex exponential does not change if a multiple of is added to its argument, we get:

Equation (5) is equivalent to equation (4). Because of this fundamental frequency ambiguity, we will often implicitly assume that the angular frequency of a discrete-time sinusoid is restricted to the range –π≤ω≤π, or equivalent, that -1/2≤f≤1/2.

The Matlab function cos or sin generates the sinusoidal sequences. For example, for x[n]=3cos(0.1πn+π/3)+2sin(0.5πn), 0n10, we will use the following script:

n=[0:10]; x=3*cos(0.1*pi*n+pi/3)+2*sin(0.5*pi*n);
stem(n,x)

This script yields:

Source:

  • Digital Signal Processing Using Matlab, 3erd ed

PREVIOUS:

Literature review by:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Exercises are solved!!

WhatsApp:  +34633129287  Inmediate Attention!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Jaén. 

WhatsApp:  +34633129287     

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s