Sin categoría

Qué es PDS – Procesamiento de señales digitales

Principalmente debido a sus ventajas, el procesamiento de señales digitales (DSP – Digital Signal Processing) se está convirtiendo en la primera opción en muchas tecnologías y aplicaciones, como la electrónica de consumo, las comunicaciones, los teléfonos inalámbricos y las imágenes médicas.

Además, el enfoque DSP hace posible convertir una computadora personal económica en un potente procesador de señales. El sistema que utiliza el enfoque DSP se puede desarrollar utilizando software que se ejecuta en una computadora de uso general. En consecuencia, DSP es relativamente conveniente de desarrollar y probar, y el software es portátil.

La mayoría de las operaciones de PDS se pueden clasificar como tareas de análisis de señales o tareas de filtrado de señales:

Análisis de señales: estas tareas se ocupan de la medición de las propiedades de las señales. Generalmente es una operación en el dominio de la frecuencia. Algunas de sus aplicaciones son:

  • Spectrum (frequency or/and phase analysis)
  • Speech recognition
  • Speaker verification
  • Target detection

Filtrado de señales: esta tarea se caracteriza por la situación de señal de entrada y salida. Los sistemas que realizan esta tarea generalmente se denominan filtros. Suele ser (pero no siempre) una operación en el dominio del tiempo. Algunas de las aplicaciones son:

  • Removal of unwanted background noise
  • Removal of interference
  • Separation of frequency bands
  • Shaping of the signal spectrum

En algunas aplicaciones, como la síntesis de voz, primero se analiza una señal para estudiar sus características, que son las que se utilizan en el filtrado digital para generar una voz sintética.

Fuente:

Digital Signal Processing Using Matlab, 3erd ed

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Jaén. 

WhatsApp:  +34633129287     

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Sin categoría

Código de Matlab para DSP – Procesamiento de señales digitales

Matlab proporciona una variedad de comandos que nos permiten controlar el flujo de comandos en un programa. El constructo más común es la estructura if-elseif-else. Otro constructo de flujo de control común es el bucle for..end. Es simplemente un ciclo de iteración que le dice a la computadora que repita alguna tarea un número determinado de veces. El siguiente ejemplo ilustra el concepto:

Ejemplo 1

Considere la siguiente suma de funciones sinusoidales. Utilice Matlab para generar muestras de x (t) en las instancias de tiempo 0:0.1:1.

En este enfoque, calcularemos cada componente sinusoidal en un paso como un vector, usando el vector de tiempo t=0:0.1:1 y luego sumaremos todos los componentes usando un bucle for..end.

>> t=0:0.1:1;

>> xt=zeros(1,length(t));

>> for k=1:3

xt=xt+(1/k)*sin(2*pi*k*t);

>> end

Obtenemos el siguiente resultado:

xt =

         0    1.3803    1.0490    0.4612    0.4293    0.0000   -0.4293   -0.4612   -1.0490   -1.3803   -0.0000

En construcción…

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV Caracas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Jaén. 

WhatsApp:  +34633129287   

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Sin categoría

Matlab Code for DSP – Introduction

Matlab provides a variety of commands that allow us to control the flow of commands in a program. The most common construct is the if-elseif-else structure. Another common control flow construct is the for..end loop. It is simply an iteration loop that tells the computer to repeat some task a given number of times. The following example illustrates the concept:

Example 1.

Consider the following sum of sinusoidal functions. Use Matlab to generate samples of x(t) at the time instances 0:0.1:1.

In this approach, we will compute each sinusoidal component in one step as a vector, using the time vector t=0:0.1:1 and then add all components using one for..end loop.

>> t=0:0.1:1;

>> xt=zeros(1,length(t));

>> for k=1:3

xt=xt+(1/k)*sin(2*pi*k*t);

>> end

We obtain the following:

xt =

         0    1.3803    1.0490    0.4612    0.4293    0.0000   -0.4293   -0.4612   -1.0490   -1.3803   -0.0000

In construction…

Previous:

Literature review by:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Exercises are solved!!

WhatsApp:  +34633129287  Inmediate Attention!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV Caracas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Jaén. 

WhatsApp:  +34633129287   

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Sin categoría

What is DSP – Digital Signal Processing

Primarily because of its advantages, Digital Signal Processing (DSP) is now becoming a first choice in many technologies and applications, such as consumer electronics, communications, wireless telephones, and medical imaging.

In addition, DSP approach makes it possible to convert an inexpensive personal computer into a powerful signal processor. System using the DSP approach can be developed using software running on a general-purpose computer. In consequence, DSP is relatively convenient to develop and test, and the software is portable.

Most DSP operations can be categorized as being either signal analysis tasks or signal filtering tasks:

Signal analysis: This tasks deal with the measurement of signal properties. It is generally a frequency-domain operation. Some of its applications are:

  • Spectrum (frequency or/and phase analysis)
  • Speech recognition
  • Speaker verification
  • Target detection

Signal filtering: This task is characterized by the signal-in signal-out situation. The systems that perform this task are generally called filters. It is usually (but not always) a time-domain operation. Some of the applications are:

  • Removal of unwanted background noise
  • Removal of interference
  • Separation of frequency bands
  • Shaping of the signal spectrum

In some applications, such as voice synthesis, a signal is first analyzed to study its characteristics, which are the used in digital filtering to generate a synthetic voice.

Source:

Digital Signal Processing Using Matlab, 3erd ed

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV Caracas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Jaén. 

WhatsApp:  +34633129287   

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Análisis de circuitos eléctricos, Ingeniería Eléctrica

Problemas de red eléctrica en régimen transitorio

El conmutador del circuito ha estado en posición A durante mucho tiempo y el circuito ha alcanzado el régimen estacionario. En t=0 s el conmutador  pasa a la posición B de forma que la energía almacenada en el inductor se va disipando en la resistencia R3. Determinar el tiempo necesario para que la energía almacenada en el inductor se reduzca al 50%. Se sabe que: Ig=-5 A; R1=75 ohm; R2=50 ohm; R3=100 ohm; L=200 microH.

Respuesta:

Debido a que el conmutador del circuito ha estado en posición A durante mucho tiempo, el circuito ha alcanzado el régimen estacionario y el circuito equivalente en t<0 es el siguiente:

En régimen permanente el inductor se comporta como un corto circuito, por lo que, aplicando Kirchhoff, sabemos que:

En t≥0  el circuito equivalente es el siguiente:

Aplicando lo aprendido en Respuesta natural y forzada de un circuito RL , podemos determinar la expresión para iL(t) de la manera siguiente:

Para determinar el tiempo necesario para que la energía almacenada en el inductor se reduzca al 50%, de lo aprendido en Respuesta natural y forzada de un circuito RL, utilizamos la siguiente relación:

En t=0 la energía acumulada en el inductor es la siguiente:

Así, el 50% de la energía acumulada en el inductor es:

De la ecuación principal para la energía, podemos deducir dos factores que se restan:

De la ecuación anterior vamos a despejar el valor de la corriente iL(t) para el instante en que la mitad de la energía en el inductor se ha consumido, es decir, para el momento en que W(t)=0.45 mJ:

Ahora, igualamos este último resultado a la expresión general deducida más arriba para iL(t) y despejamos el valor del tiempo t en el cual se alcanza una corriente de iL(t)=2.12 A, el cual es el tiempo en que se ha consumido la mitad de la energía almacenada en el inductor L:

De donde:

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Jaén. 

WhatsApp:  +34633129287   

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Análisis de sistemas de control

Examen resuelto de Sistema de Control

La siguiente función de transferencia es el modelo matemático de un sistema cuya respuesta al escalón unitario se observa a continuación:

Respuesta:

2) De un sistema cuya función de transferencia es el siguiente,:

3) De un circuito electrónico de segundo orden se conoce que su diagrama de Bode de bucle abierto es el siguiente:

4) Se conoce el LGR siguientes, sobre los cuáles se pregunta:

5) Para un sistema realimentado se ha trazado el Diagrama de Bode que se muestra:

6. Se conoce la función de transferencia siguiente:

Respuesta:

7. Del sistema que se muestra en la siguiente Figura:

8. Con respecto al siguiente DB se pide:

9. Con respecto al siguiente DB y LGR se pide:

10. Con respecto al siguiente DB se pide:

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV Caracas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Convolución - respuesta al impulso, Señales y Sistemas

Sumatoria de Convolución – Convolución en tiempo discreto

En general, cualquier señal discreta x[n] puede ser representada como una combinación lineal de deltas desplazadas. En general se cumple que:

La imagen tiene un atributo ALT vacío; su nombre de archivo es null-57.png

Ejemplo:

Sea la función x[n] representada por la siguiente gráfica:

La imagen tiene un atributo ALT vacío; su nombre de archivo es null-58.png

La función x[n] de la gráfica anterior puede ser representada mediante la siguiente sumatoria:

La imagen tiene un atributo ALT vacío; su nombre de archivo es null-59.png

A continuación se observa cada una de las gráficas que se suman para formar x[n]:

La imagen tiene un atributo ALT vacío; su nombre de archivo es null-60.png
Suma de convolución

En el ejemplo anterior se ve claramente la importancia de las propiedades de muestreo y selección definidas anteriormente para la función impulso unitario (El Impulso Unitario). Su importancia reside en el hecho de que x[n] se puede representar como una superposición de versiones escaladas de un conjunto muy sencillo de funciones elementales, es decir, de impulsos unitarios δ[n-k] desplazados. A partir de este simple hecho vamos a presentar ahora uno de los conceptos más importante del análisis de sistemas lineales, la idea de la sumatoria de convolución.

Decíamos antes que cualquier señal discreta x[n] puede representarse como una combinación lineal de deltas desplazadas:

La imagen tiene un atributo ALT vacío; su nombre de archivo es null-57.png

Supongamos ahora que x[n] representa toda entrada para un arbitrario Sistema A cuya salida es y[n]. Recordemos del párrafo anterior que en realidad x[n] es una suma de versiones escaladas (con peso x[k]) de impulsos unitarios δ[n-k] desplazados.

Designemos a hk[n] como la respuesta del sistema al impulso unitario desplazado δ[n-k]. Debido a que el sistema es un LTI  (cumple con la propiedad de linealidad y de invarianza en el tiempo) podemos expresar matemáticamente la salida y[n] del Sistema A como una sumatoria de las respuestas individuales del sistema a cada impulso unitarios δ[n-k] con peso x[k]:

Entonces, de acuerdo con la ecuación anterior, si conocemos la respuesta de un sistema lineal al conjunto de impulsos unitarios desplazados, podemos construir la respuesta a cualquier entrada arbitraria. Debido a que δ[n-k] es la versión desplazada de δ[n], así hk[n] es una versión desplazada de su versión en el origen h0[n]. Por lo tanto:

Por convención científica se obvia el subíndice en h0[n] y se deja simplemente como h[n]. De esta manera, la salida y[n] del Sistema A se puede expresar como:

Este importante resultado se conoce como suma de convolución, y el miembro derecho de la ecuación se conoce como convolución de las secuencias x[n] y h[n].

Para la convolución de las secuencias x[n] y h[n] se utiliza el signo *. De esta manera, la salida y[n] del Sistema A se puede expresar como:

Dónde:

La Figura siguiente presenta un resumen de los resultados obtenidos hasta ahora:

La aplicación de este resultado lo podemos ver gráficamente mediante el siguiente ejemplo.

Ejemplo:

Sean la entrada x[n] a un sistema y su repuesta al impulso h[n], tal como se especifica a continuación:

Determinar la salida y[n]  del sistema.

Respuesta:

Pasos para aplicar la sumatoria de convolución

Repetimos este importante hallazgo, la salida y[n] de cualquier sistema LTI de tiempo discreto se puede obtener mediante la convolución de la entrada x[n]  con la respuesta al impulso h[n]. Es lo que manifiesta el siguiente esquema:

La suma de convolución anterior involucra los siguientes pasos:

  1. La respuesta al impulso h[k] se invierte en el tiempo (es decir, se refleja sobre el origen) para obtener h[-k]  y posteriormente se desplaza mediante n para formar h[n-k] = h[-(k-n)], que es una función de k con parámetro n;
  2. Las dos secuencias x[k] y h[n-k] se multiplican entre sí para todos los valores de k con n fija en algún valor;
  3. El producto x[k]h[n-k] se suma sobre todas las k para producir una sola muestra de salida y[n];
  4. Los pasos 1 a 3 se repiten a medida que n varía en el intervalo de –infinito a +infinito para producir la salida completa y[n].

Ejemplo 1:

La entrada x[n] y la respuesta al impulso h[n] de un sistema LTI están dadas por:

Calcule la salida y[n] mediante:

La imagen tiene un atributo ALT vacío; su nombre de archivo es null-70.png

Respuesta:

Las secuencias para x[k] y h[n-k], y el resultado de la multiplicación y posterior suma, se observan a continuación:

Propiedades de la convolución.

Las siguientes propiedades de la suma de convolución son análogas a las de la integral de convolución:

Otras propiedades de interés son:

También la solución a cierto problema se puede determinar de manera analítica, utilizando las propiedades de la convolución señaladas anteriormente. Tal es el caso del siguiente ejemplo.

Ejemplo 2:

Ante una entrada x[n], la respuesta y[n] de un sistema LTI es:

Se conoce que la respuesta al impulso h[n] del sistema:

Determinar x[n]. Seleccionar la respuesta correcta de las siguientes alternativas:

Respuesta:

Nuestra estrategia será utilizar las siguientes propiedades:

Expresamos la respuesta al impulso en términos de deltas de Dirac desplazados:

Luego, si seleccionamos:

Entonces:

Podríamos demostrar gráficamente que la anterior ecuación coincide con la gráfica para y[n] dada en el enunciado. Por lo tanto, la opción correcta es la letra a).

Respuesta al escalón.

La respuesta y[n] al escalón u[n] de un sistema LTI de tiempo discreto cuya respuesta al impulso es h[n], se obtiene fácilmente mediante:

Notar que, de acuerdo con la ecuación anterior:

Notar la estrecha relación que tiene este resultado con el hecho demostrado en El Impulso Unitario de que:

La imagen tiene un atributo ALT vacío; su nombre de archivo es null-49.png

Es decir, podemos conocer la respuesta al impulso de un sistema LTI discreto, a partir de su respuesta a la función escalón, mediante:

La imagen tiene un atributo ALT vacío; su nombre de archivo es null-74.png

En construcción…….

Fuentes:

  1. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab
  2. Análisis de sistemas lineales asistido con Scilab, Ebert Brea.
  3. Analisis_de_Sistemas_Lineales
  4. Oppenheim – Señales y Sistemas
  5. Señales y sistemas – Shaum

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Jaén. 

WhatsApp:  +34633129287     

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Sin categoría

La función Impulso Unitario

La función impulso unitario δ(t), también conocida como Delta de Dirac, tiene un papel fundamental en el análisis de señales. La misma está definida de la siguiente manera:

Esta señal de puede ver como un pulso rectangular de área unidad, ancho ε y altura 1/ε, tal como se muestra en la Figura 1:

Figura 1

Como se puede ver en la Figura anterior, la función impulso unitario es una función par, es decir:

La función impulso unitario δ(t) no es una función en el sentido ordinario como se define una función. Una función ordinaria viene especificada para todos sus valores de tiempo t. La función impulso unitario es cero para todo valor de t, excepto en t=0, y este es el único punto interesante de su dominio, y sin embargo aquí su valor es indefinido. Más útil es definir la función impulso unitario δ(t) como una función generalizada. Una función generalizada se define por sus efectos sobre otras funciones, en vez de ser definida por los valores que asume en su dominio.

En este caso, la función impulso unitario δ(t) se define sobre todo por su propiedad de muestreo y por su propiedad de selección.

Otra manera de decirlo es que la función impulso unitario δ(t) está mejor definida por sus aplicaciones que por los valores que asume en su dominio.

Propiedad de muestreo – multiplicación de una función particular por una función impulso.

Supongamos la multiplicación entre la función δ(t) y una función cualquiera Φ(t) continua en t=0, donde la función tiene una magnitud Φ(0) en ese punto. Se obtiene que:

Este resultado es de gran importancia y se va a aplicar en la siguiente propiedad. Además, se puede generalizar para una función impulso unitario desplazado en t=T:

Propiedad de selección de la función impulso unitario

Integrando el resultado de la propiedad anterior y utilizando la definición del impulso unitario dado al principio, obtenemos que:

La anterior es una de las propiedades más importantes en el análisis de señales y sistemas. Este resultado se puede generalizar como:

Propiedad de escalamiento de la función impulso unitario

Se puede demostrar que:

Lo que implica que:

La función impulso unitario y la función escalón unitario.

Una aplicación de gran importancia en cuanto a la función impulso unitario, es que hace posible la existencia de la derivada de la función escalón unitario en t=0, lo cual no es posible en el sentido de una función ordinaria, pero si en el sentido de una función generalizada. Para esto, integramos el producto de la función Φ(t) definida anteriormente y du(t)/dt:

Este resultado demuestra que du(t)/dt satisface la propiedad de selección de δ(t). Es decir, en términos de una función generalizada:

En consecuencia:

A continuación pasamos a estudiar el caso tiempo discreto.

Impulso unidad delta.

Se trata de una de las señales discretas más simples, la señal impulso unitario discreto, la cual se define como:

De hecho, la señal impulso unitario discreto es la base de la representación de las señales discretas, cualquier señal discreta se puede obtener como combinación lineal de deltas desplazadas. El ejemplo más relevante es el escalón unidad o escalón unitario.

Escalón unidad

La señal escalón unitario se define como:

El escalón unitario es la suma de un tren de impulsos:

De esta manera, complementado el caso de tiempo continuo, el impulso unidad se puede expresar como:

También se puede expresar el escalón unitario como:

Es interesante constatar que en el caso del impulso unidad también se cumple la propiedad de muestreo:

En general, cualquier señal discreta x[n] puede ser representada como una combinación lineal de deltas desplazadas. En general se cumple que:

Ejemplo:

Sea la función x[n] representada por la siguiente gráfica:

La función x[n] de la gráfica anterior puede ser representada mediante la siguiente sumatoria:

A continuación se observa cada una de las gráficas que se suman para formar x[n]:

Suma de convolución

En el ejemplo anterior se ve claramente la importancia de las propiedades de muestreo y selección definidas anteriormente para la función impulso unitario. Su importancia reside en el hecho de que x[n] se puede representar como una superposición de versiones escaladas de un conjunto muy sencillo de funciones elementales, es decir, de impulsos unitarios δ[n-k] desplazados. A partir de este simple hecho vamos a presentar ahora uno de los conceptos más importante del análisis de sistemas lineales, la idea de la suma de convolución.

Decíamos antes que cualquier señal discreta x[n] puede representarse como una combinación lineal de deltas desplazadas:

La imagen tiene un atributo ALT vacío; su nombre de archivo es null-57.png

Supongamos ahora que x[n] representa toda entrada para un arbitrario Sistema A cuya salida es y[n]. Recordemos del párrafo anterior que en realidad x[n] es una suma de versiones escaladas (con peso x[k]) de impulsos unitarios δ[n-k] desplazados. Designemos a hk[n] como la respuesta del sistema al impulso unitario desplazado δ[n-k].

Continuación…Sumatoria de Convolución

Fuentes:

  1. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab
  2. Análisis de sistemas lineales asistido con Scilab, Ebert Brea.
  3. Analisis_de_Sistemas_Lineales
  4. Oppenheim – Señales y Sistemas
  5. Señales y sistemas – Shaum

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Jaén. 

WhatsApp:  +34633129287     

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Sin categoría

First order systems – Transient Response

A first order system is one that is defined by a first order differential equation of the type:

In Figure 1 the transfer function G(s) of the previous equation is represented:

Figure 1

Figure 2 shows the location of the pole of G(s), located in s=-a0:

Figure 2

For analytical convenience we are going to order G(s) as follows:

Where K and τ are The System Gain and The Time Constant respectively. K and τ are the most important parameters of a first order system as they help to quickly understand (or anticipate) the behavior of the system. This is possible due to the unit step is usually used as the test input u(t) to most systems to know how the output y(t) is going to behave.

Applying Laplace’s anti-transform to the equation Y(s)/U(s), in terms of the parameters defined above, we can easily see that the output y(t) of a first-order system subjected to a step input ue(t) of amplitude A, is:

Very interesting in the previous expression is to realize the following:

  • That if the constant a0 is positive, the exponential response of the system ends up stabilizing. This agrees with the theory that the poles of a transfer function must be located on the left side of the s-plane for a system to be stable.
  • That the time constant τ is positive if the constant a0 is positive. Which makes a lot of sense since τ is a time interval. If a0 were negative, the constant τ is negative and the system is unstable,
Example 1

The following example and its graph in Matlab (Figure 3) allows us to see the standard form of y(t) as the output of a first order system subjected to a step input ue(t) of amplitude 1, K=2, τ=1:

>> G=tf([2],[1 1]);

>> step(G)

Figure 3

In Figure 3 we can see the qualitative meaning of the constants K and τ. The constant K is the final value of the first order system when a long time has passed (steady state). In the example and thanks to the graph in Figure 2, we see that this final value is 2, as specified by G(s). Hence the usefulness of knowing the value of K if the system is of the first order …. We already know what the final value of the system is in steady state for a unit step input.

For its part, by definition, the constant τ is the time it takes a system to reach 63.2% of its final value. We can check this in our example. If the final system value at the unit step input is equal to 2, 63.2% of 2 is 1,264. In our Matlab graph we can mark the value of the output with a right click on the blue curve, and then drag this point until τ = 1, and notice that the value is as expected, Figure 4:

Figure 4

n the following graph, Figure 5, we can observe in general the meaning of the parameters defined for a first order system:

Figure 5. Response of a 1st order system to a unit step input.

Another important characteristic is the time in which the system reaches the stable state, known as ts (settlement time) for which there are two criteria, the 2% criterion or the 5% criterion. Settling time ts is the time required for transient damped oscillations to reach and remain within ± 2% or ± 5% of the final value or steady state value.

According to Figure 5, and according to the 5% criterion, the ts is reached at t = 3τ. On the other hand, according to the 2% criterion, the ts is reached at t = 4τ. We can corroborate these statements in our example and its graph in Matlab (Figure 6), knowing that 2% of 2 is 0.04 (the output has to be worth 1.96 or less after t = 4 s), while 5% of 2 is 0.1 (output must be 1.90 or less after t = 3 s)

Figure 6

The equation that allows to relate the settlement time ts with the constant τ is the following:

Where tR is the delay time if it comes to show up.

Ejemplo 2

To incorporate a 2 seconds delay in our previous example (Figure 3), we modify our G(s) as follows (Figure 7):

>> s=tf(‘s’);

>> H=exp(-2*s);

>> G2=G*H;

>> step(G2)

Figure 7

Therefore, the settling time ts in our example, according to both criteria, is:

Figure 8
Example 3. 

Considering a first-order system defined by:

Obtain the response of the system when a step input U(t)=9 is applied to it, as well as its final value y(∞):

Solution:

We know that the output of a first-order system is of the type:

Where A is the amplitude of the step input. Therefore, we only have to obtain the value of both parameters K and τ from the function G(s):

We also know that in a first order system the function G(s) has the following form

Then we can assert that:

Thus:

From where we can also deduce the final value of y(t):

Ejemplo 4

Hablemos ahora de un sistema físico muy común, un circuito RC como el de la Figura:

null
null

Demostrar que la respuesta del sistema para una entrada escalón unitario es:

null

Respuesta:

Sabemos que la salida de un sistema de primer orden es del tipo:

Que a su vez es la solución para la ecuación diferencial del tipo:

Comparamos las siguientes ecuaciones:

De la comparación podemos asignar lo siguiente:

Entonces la expresión para Vc es del tipo:

La expresión anterior supone que la condición inicial V(0) del capacitor es cero. Caso contrario, debe incluirse de la manera siguiente:

Queda así demostrado el enunciado del problema, ya que en un circuito RC la constante τ=RC.

Fuente:

  1. Ingeniería de Control Moderno 3ra. Ed. Katsuhiro Ogata.
  2. Control Systems Engineering, Nise
  3. Automática – Tema 4 – Respuesta temporal
  4. Introducción a los sistemas de control con matlab

Literature review made by:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Homework are done, exercises are solved!!

WhatsApp:  +34633129287  Inmediate attention!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, España. telf – +34633129287

WhatsApp: +34633129287

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Análisis de sistemas de control, Respuesta Transitoria

Sistemas de primer orden – Respuesta Transitoria

Un sistema de primer orden es aquel que queda definido por una ecuación diferencial de primer orden del tipo:

En la Figura 1 se representa la función de transferencia G(s) de la ecuación anterior, la cual es:

Figura 1

En la Figura 2 se observa la ubicación del polo de G(s), localizado en s=-a0:

Figura 2

Por conveniencia analítica vamos a ordenar G(s) de la siguiente manera:

Dónde:

K y τ son los parámetros más importantes de un sistema de primer orden ya que ayudan a comprender (o anticipar) rápidamente el comportamiento del sistema. Esto es posible porque por lo general se utiliza el escalón unitario como entrada de prueba u(t) a la mayoría de los sistemas para saber cómo va a comportarse la salida y(t).

Aplicando la antitransformada de Laplace a la ecuación Y(s)/U(s), en término de los parámetros definidos anteriormente, podemos ver fácilmente que la salida y(t) de un sistema de primer orden sometido a una entrada escalón ue(t)  de amplitud A, es:

Bien interesante en la expresión anterior es darse cuenta de lo siguiente:

  • Que si la constante a0 es positiva, la respuesta exponencial del sistema termina estabilizándose. Esto concuerda con la teoría que dice que los polos de una función de transferencia deben estar ubicados en el lado izquierdo del plano s para que un sistema sea estable.
  • Que la constante de tiempo τ es positiva si la constante a0 es positiva. Lo que tiene mucho sentido ya que τ es un intervalo de tiempo. Si a0 fuera negativa, la constante τ es negativa y el sistema es inestable.
Ejemplo 1

El siguiente ejemplo y su gráfica en Matlab (Figura 3) nos permite ver la forma estándar de y(t) como salida de un sistema de primer orden sometido a una entrada escalón ue(t)  de amplitud 1, K=2, τ=1:

>> G=tf([2],[1 1]);

>> step(G)

Figura 3

En la Figura 3 podemos ver el significado cualitativo de las constantes K y τ. La constante K es el valor final del sistema de primer orden cuando ha pasado mucho tiempo (estado estable). En el ejemplo y gracias a la gráfica de la Figura 2, vemos que ese valor final es 2, tal como lo especifica G(s). De allí la utilidad de saber el valor de K si el sistema es de primer orden….ya sabemos cuál es el valor final del sistema en estado estable para una entrada escalón unitario.  

Por su parte, por definición, la constante τ es el tiempo en el que un sistema tarda en alcanzar el 63.2% de su valor final. Esto lo podemos comprobar en nuestro ejemplo. Si el valor final del sistema a la entrada escalón unitario es igual a 2, el 63,2% de 2 es 1.264. En nuestra gráfica de Matlab podemos marcar el valor de la salida con click derecho sobre la curva azul, y luego arrastrar este punto hasta τ=1, y notar que el valor es el esperado en la Figura 4:

Figura 4

 En la siguiente gráfica, Figura 5, podemos observar en general el significado de los parámetros definidos para un sistema de primer orden:

Figura 5. Respuesta de un sistema de 1er orden ante una entrada escalón unitario.

Otra característica de importancia es el tiempo en que el sistema alcanza el estado estable, conocido como ts (tiempo de establecimiento o tiempo de asentamiento) para lo cual existen dos criterios, el criterio del 2% o el criterio del 5%. El tiempo de asentamiento ts es el tiempo requerido para que las oscilaciones amortiguadas transitorias alcancen y permanezcan dentro del ±2% o del  ±5% del valor final o valor en estado estable.

De acuerdo con la Figura 5, y según el criterio del 5%, el ts se alcanza en t=3τ.  Por otra parte, según el criterio del 2%, el ts se alcanza en t=4τ. Podemos corroborar estas afirmaciones en nuestro ejemplo y su gráfica en Matlab (Figura 6), sabiendo que el 2% de 2 es 0.04 (la salida tiene que valer 1.96 o menos después de t=4s), mientras que el 5% de 2 es 0.1 (la salida tiene que valer 1.90 o menos después de t=3s):

Figura 6

La ecuación que permite relacionar el tiempo de asentamiento ts con la constante τ es la siguiente:

Donde tR es el tiempo de retraso si es que llega a presentarse.

Ejemplo 2

Para incorporar  un retraso de 2 segundos en nuestro ejemplo anterior (Figura 3), modificamos nuestra G(s) de la manera siguiente (Figura 7):

>> s=tf(‘s’);

>> H=exp(-2*s);

>> G2=G*H;

>> step(G2)

Figura 7

Por lo tanto, el tiempo de establecimiento en nuestro ejemplo, de acuerdo con ambos criterios, es:

Figura 8
Ejemplo 3. 

Considerando un sistema de primer orden definido por:

Obtenga la respuesta del sistema cuando se le aplica una entrada escalón U(t)=9, así como su valor final y(∞):

Respuesta:

Sabemos que la salida de un sistema de primer orden es del tipo:

Donde A es la amplitud de la entrada escalón. Por lo tanto, sólo debemos obtener el valor de ambos parámetros K y τ a partir de la función G(s):

Sabemos también que en un sistema de primer orden la función G(s) tiene la siguiente forma:

Entonces podemos aseverar que:

Por lo tanto:

De donde también podemos deducir el valor final de yt):

Ejemplo 4

Hablemos ahora de un sistema físico muy común, un circuito RC como el de la Figura:

null
null

Demostrar que la respuesta del sistema para una entrada escalón unitario es:

null

Respuesta:

Sabemos que la salida de un sistema de primer orden es del tipo:

Que a su vez es la solución para la ecuación diferencial del tipo:

Comparamos las siguientes ecuaciones:

De la comparación podemos asignar lo siguiente:

Entonces la expresión para Vc es del tipo:

La expresión anterior supone que la condición inicial V(0) del capacitor es cero. Caso contrario, debe incluirse de la manera siguiente:

Queda así demostrado el enunciado del problema, ya que en un circuito RC la constante τ=RC.

Fuente:

  1. Ingeniería de Control Moderno 3ra. Ed. Katsuhiro Ogata.
  2. Control Systems Engineering, Nise
  3. Automática – Tema 4 – Respuesta temporal
  4. Introducción a los sistemas de control con matlab

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, España. telf – +34633129287

WhatsApp: +34633129287

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com