Análisis de sistemas de control, Lugar geométrico de las raíces, PID

Efecto de añadir un zero – Ejemplo – Diseño de Sistema de control

Efectos de la adición de zeros: la adición de un zero a la función de transferencia en lazo abierto tiene el efecto de jalar el LGR hacia la izquierda, con lo cual el sistema tiende a ser más estable, y además se acelera el asentamiento de la respuesta. El efecto de tal control es introducir un grado de previsión al sistema y acelerar la respuesta transitoria.

Para ilustrar este efecto, veamos el siguiente ejemplo:

Ejemplo 1

Supongamos que estamos en presencia de un sistema con una planta inestable. Un ejemplo de semejante situación es la siguiente:

null

Donde G(s) es la función de transferencia de la planta y H(s)  es la función de transferencia del sensor utilizado para ensamblar el sistema a lazo cerrado, como se muestra en la Figura 1:

null

Figura 1

Sabemos por Álgebra de Bloques y la teoría sobre la Función de Transferencia, que la función de transferencia a lazo abierto de este sistema Gd(s) es:

null

Sabemos también que el LGR (Lugar Geométrico de las Raíces) se traza con la función de transferencia a lazo abierto Gd(s) de este sistema, para lo cual podemos hacer uso del siguiente comando en Matlab:

null

null

Gráfica 1

Análisis: En la gráfica 1 podemos ver que el sistema es inestable para todos los valores positivos de la ganancia K. Es decir, si nos desplazamos por las curvas azul y verde, variando el valor de K, como en la gráfica 2, donde K1=0.143; K2=3.66 y K1=30.5, respectivamente, vemos que los polos del sistema están ubicados en el lado derecho del plano s, y se trata por tanto de un sistema inestable:

null

Gráfica 2

Apliquemos el principio de la adición de un zero a la función de transferencia en lazo abierto a este caso. Vamos a añadir un zero en s= -0.5 (Figura 2), por lo tanto la Gd(s) del sistema es ahora:

null

null

Figura 2

Veamos el efecto de añadir un zero al sistema mediante:

null

null

Gráfica 3

Análisis: En la gráfica 3 vemos que el LGR del sistema se ha desplazado hacia la izquierda y que el sistema es estable para cualquier valor positivo de la ganancia k, esto es, que todos los polos del sistema a lazo cerrado están ubicados en lado izquierdo del plano s (Gráfica 4), condición indispensable para que le sistema sea estable:

null

Gráfica 4

Fuente:

  1. Katsuhiko Ogata, Ingeniería de Control Moderno, páginas 408-442-443.

Te puede interesar también:

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Valladolid, Quito, Guayaquil, Jaén, Villafranca de Ordizia, España – Telf. +34633129287

Se hacen ejercicios…Atención Inmediata!!

WhatsApp: +34633129287

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Sin categoría

Ejemplo masa unida a extremo resorte – Báscula – ecuaciones

En una fábrica de básculas se realizan pruebas para mejorar la calidad, una masa de 3 kilogramos está unida al extremo de un resorte estirado 20 centímetros por una fuerza de 15 Newtons. Es puesto en movimiento en posición inicial x=0 y velocidad inicial de -10 m/s
    1. Encuentre la ecuación que describe el movimiento x(t)
    2. Calcule la amplitud, el periodo y la frecuencia del movimiento
    3. Calcule la posición, velocidad y aceleración del cuerpo 1 segundos después de iniciado el movimiento.
Respuesta:
Una báscula es un instrumento técnico diseñado para calibrar el peso de una masa. En la primera etapa del problema el resorte está estirado 20 cm, con una masa de 3 Kg en su extremo, sometido a una fuerza de 15 N, como en la Figura 1: null

Figura 1

El resorte está sometido a la acción de dos fuerzas: la fuerza F1=15 N, y la fuerza F2 del peso de la masa de 3 Kg, es decir: null Por la Ley de Hooke sabemos que el resorte se estira x=20 cm bajo la acción de estas dos fuerzas y según la fórmula siguiente: null De donde obtenemos el valor de la constante k: null En la segunda etapa del problema el resorte es puesto en movimiento en la posición inicial x=0 y con velocidad inicial vo=-10 m/s. Suponiendo que el desplazamiento es positivo hacia abajo, acudimos a la segunda ley de Newton: nullDónde: null Por lo tanto: null Aplicamos transformada de Laplace:

null

Pero sabemos del enunciado que: null Sustituyendo obtenemos: null Despejamos X(s): null Para aplicar la antitransformada consideramos la siguiente tabla: null Entonces: null Aplicando la antitransformada de Laplace obtenemos x(t): null Podemos ver en la ecuación (1) que el desplazamiento del resorte es una oscilación infinita. Esto sucede porque no el sistema no tiene, idealmente, amortiguación. De la ecuación (1) podemos obtener los siguientes datos: null Para encontrar la posición en t= 1 s, sustituimos este valor en la ecuación (1): null El signo negativo del resultado anterior indica que el resorte se ha movido hacia arriba. Para encontrar la velocidad v(t) en t= 1 s , derivamos la ecuación (1):

null 

El signo negativo del resultado anterior indica que el resorte se mueve hacia arriba. Para encontrar la aceleración a(t) en t= 1 s , derivamos la ecuación (2): null Te puede interesar también:

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Jaén.

WhatsApp:  +34633129287

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Sin categoría

Ejemplo de funciones de carga y corriente de un circuito RLC

Una compañía de dispositivos electrónicos realiza pruebas para mejorar la calidad de sus productos, y quiere determinar la carga en el capacitor de un circuito LRC en serie cuando L=0.5 H, R=10 Ω, C=0.001 F, E(t)=150 V, q(0)=1 C, i(0)=0 A, Cuáles son las funciones de carga y de corriente del circuito? (1era parte)

Respuesta:

Las funciones de carga y de corriente del circuito están compuestas por la respuesta natural (homogénea) y la respuesta forzada (particular o permanente):

null

Para estudiar la respuesta homogénea, consideramos el circuito RLC de la Figura 1. Este circuito se excita con la energía inicialmente almacenada en el capacitor y el inductor:

null

Figura 1

Dónde:

null

Al aplicar LVK al circuito de la Figura 1, obtenemos:

nullEn el tiempo t=0 s, la ecuación (1) se puede escribir como:

nullDe donde:

null

Para eliminar la integral de la ecuación (1) derivamos con respecto a la variable t:

null

Ordenamos la ecuación (2) para obtener la forma estándar:

null

Sustituyendo valores en la ecuación (3) obtenemos:

null

Con la ecuación (4) formamos un polinomio D en función de una variable p:

null

El polinomio de la ecuación (5) es denominado ecuación característica. Hallamos las raíces de la ecuación (5):

null

Estas raíces generan soluciones sinusoidales que decrecen exponencialmente de la forma: Para cada par de raíces complejas conjugadas simples del tipo null  aparecerá en la solución un término de la forma:

nullPor tanto:

null

En el estado permanente el capacitor se comporta como un corto, por lo que:

nullPor tanto:

null

Para hallar el valor de las constantes, utilizamos las condiciones iniciales:

null

Donde U(t) es la función escalón unitario. Una vez determinada la expresión para la corriente, debemos considerar el circuito de la Figura 2  para hallar el voltaje Vc en el capacitor:

Circuito RLC.png

Figura 2.

Al aplicar LVK al circuito de la Figura 2, obtenemos:

null

Necesitamos la derivada de la corriente:

null

Despejamos Vc de la ecuación (7):

null

En definitiva:

null

A continuación  las gráficas para ic(t) y Vc(t):

nullGráfica 1

Análisis: En la gráfica 1, el voltaje en el capacitor oscila alrededor de 150 V, luego esa oscilación, que es el comportamiento natural del sistema, desaparece, y sólo queda la respuesta en estado estable, que es cuando el voltaje del capacitor es igual al voltaje de la fuente.

null

Gráfica 2

Análisis: En la gráfica 2, la corriente en el capacitor oscila en su etapa de transición (respuesta natural). Podemos ver que al principio es cero como lo señala la condición inicial. Luego de oscilar se estabiliza en cero, que es cuando el capacitor se ha cargado y actúa como un circuito abierto.

2DA PARTE
  • Una compañía de dispositivos electrónicos realiza pruebas para mejorar la calidad de sus productos, y en un circuito sencillo la resistencia es 20 Ω y la inductancia es de 0.25 H, C=1/300 F. Si E(t)=0 V, q(0)=4 C, i(0)=0, el interruptor se cierra, encontrar:
    1. Las funciones q(t), i(t).
    2. i, q después de 2 segundos

Respuesta: Ejercicio RCL 2da parte

Te puede interesar también:

Escrito por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Jaén – España: Tlf. 633129287

Caracas, Quito, Guayaquil, Lima, México, Bogotá, Cochabamba, Santiago.

WhatsApp: +34 633129287

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com