Análisis de sistemas de control, Función de Transferencia

Función de transferencia a lazo abierto y lazo cerrado – ejemplos

Para entender el concepto de Función de Transferencia a lazo abierto, o por el contrario, a lazo cerrado, utilizamos un diagrama de bloques de un sistema en lazo cerrado, Figura 1:

null

Figura 1

Donde G(s) es la función de transferencia de la planta y H(s)  es la función de transferencia del sensor. El sensor genera una señal B(s) que se realimenta al punto de suma, donde se compara con la señal de referencia R(s), generando una señal denominada señal de error E(s). Aplicando álgebra de bloques a la Figura 1 podemos ver claramente que la señal de salida C(s) se puede obtener multiplicando E(s) por G(s):

nullEs decir:null

A la función G(s) de la ecuación (1) se le conoce como Función de transferencia de trayectoria directa (cociente entre la salida y la señal de error):

null

Nuevamente aplicando álgebra de bloques a la Figura 1 podemos ver que la señal de realimentación B(s)  se puede obtener multiplicando C(s) por H(s), es decir, E(s)G(s) por H(s):

nullO sea:null

El producto G(s)H(s) de la ecuación (2) se le conoce como Función de transferencia en lazo abierto (cociente entre la señal de realimentación y la señal de error):

null

Notas importantes:

  1. Si la función de transferencia H(s) de la trayectoria de realimentación (FT del sensor) es igual a uno, H(s)=1, sólo en este caso, la función de transferencia a lazo cerrado es igual a la función de transferencia de trayectoria directa;
  2. A la función de transferencia de trayectoria directa G(s) también se le conoce simplemente como Función de transferencia directa.

Es decir, si el sistema está representado por el DB de la  Figura 2:

null

Figura 2

Entonces la función de transferencia directa G(s) es también la función a lazo abierto.

Una vez más, aplicando álgebra de bloques a la Figura 1 podemos ver que la señal de salida C(s)  se puede obtener multiplicando G(s) por E(s), es decir:

nullDespejando C(s) , obtenemos que:

nullDe donde:

null

A la función C(s)/R(s) de la ecuación (3) se le conoce como Función de transferencia en lazo cerrado (cociente entre la señal de salida y la señal de entrada):

null

Nota importante: La ecuación (3) nos permite obtener la transformada de Laplace de la salida para cualquier entrada, una vez que sabemos cuál es la función de transferencia a lazo cerrado, mediante:

null

Ejemplo:

Recomiendo ver: Efecto de añadir un Zero – Diseño de Sistema de control

Fuente:

  1. Katsuhiko Ogata, Ingeniería de Control Moderno, páginas 65-66.

Te puede interesar también:

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Caracas, Quito, Guayaquil, Cuenca, España. +34633129287

WhatsApp:  +34633129287   

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

1 comentario en “Función de transferencia a lazo abierto y lazo cerrado – ejemplos”

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s