Análisis de sistemas de control, Respuesta en el tiempo

Ejemplo – Error en estado estable para dos entradas: escalón y rampa.

Dado el sistema de la siguiente figura, aplicar las siguientes señales de entrada: Escalón unitario, Rampa unitaria y Escalón de amplitud factor*2:

null

Se consideran las dos plantas siguientes:

null

Se pide: 1) Observar la respuesta temporal simulada durante 20 segundos para cada sistema y para cada entrada. 2) Obtener gráficamente el valor del error que presenta la respuesta cada sistema al cabo de 10 segundos.  3) Calcular la expresión analítica de dicho error en estado estacionario para cada una de las señales de entrada.

  1. Incluir un controlador proporcional, esto es, una ganancia (bloque Gain) en el diagrama. Dar el valor 10 a la ganancia y obtener de nuevo su respuesta ante las entradas utilizadas en el apartado anterior.
  2. De forma análoga, obtener gráficamente el valor del error que presenta la respuesta del sistema al cabo de 10 segundos. Calcular la expresión analítica de dicho error en estado estacionario para cada una de las señales de entrada.
  3. El sistema con la función de transferencia 1 se prueba con dos controladores: un P con ganancia proporcional 0.7 y un PI con la misma ganancia proporcional y con ganancia integral 10. Observar la respuesta obtenida ante un escalón unitario para el sistema sin controlador, para el sistema con el controlador P y para el que tiene el PI.
  4. Buscar una posible modificación en las ganancias de ambos controladores para mejorar la respuesta.
Respuesta:

Antes de simular la respuesta a las diferentes señales, definimos en Matlab las funciones de transferencia de cada planta mediante:

>> G1=tf([1],[1 1]);

>> G2=tf([1],[1 1 0]);

Estos comandos arrojan el siguiente resultado:

null

Definimos los sistemas de realimentación unitaria para cada una de las plantas:

>> sys1=feedback(G1,1);

>> sys2=feedback(G2,1);

null

Entrada Escalón unitario: Con la función step() simulamos la respuesta al escalón unitario de cada sistema de realimentación definido, durante 20 segundos:

>>  step(sys1)

null

Gráfica 1

>> step(sys2)

null

Gráfica 2

Mediante estas gráficas podemos calcular el valor del error que presenta la respuesta de cada sistema a la entrada escalón al cabo de 10 segundos. Comenzamos con sys1:

null

Gráfica 3

En la gráfica 3 podemos observar que la salida del sistema de realimentación 1, el cual involucra a G1(s), a los 10 segundos es igual a 0.5. Por lo tanto el error, e1(t) de este sistema a la entrada escalón cuando t=10s, es:

null

También se observa en la gráfica 3 que a los 10s el sistema 1 ha alcanzado su estado estable. Esto lo podemos corroborar mediante el comando stepinfo():

null

Por lo que el error a la entrada escalón unitario a los 10 segundos es igual al error e1step(∞) del sistema a la entrada escalón en estado estable:

null

En consecuencia, se puede calcular analíticamente este error utilizando la constante de posición Kp:

null

El error en estado estable e1step(∞) del sistema 1 a la entrada escalón unitario es:

null

Aplicamos este mismo procedimiento para calcular el valor del error que presenta la respuesta del sys2 a la entrada escalón unitario al cabo de 10 segundos:

null

Gráfica 4

En la gráfica 4 podemos observar que la salida del sistema de realimentación 2, el cual involucra a G2(s), a los 10 segundos es igual a 1. Por lo tanto el error, e2(t) de este sistema a la entrada escalón cuando t=10s, es:

null

Se observa en la gráfica 4 que a los 10s el sistema 2 ha alcanzado su estado estable.

null

Por lo que el error a la entrada escalón unitario a los 10 segundos es igual al error e2step(∞) del sistema a la entrada escalón en estado estable:

null

En consecuencia, se puede calcular analíticamente este error utilizando la constante de posición Kp:

null

El error en estado estable e2step(∞) del sistema 2 a la entrada escalón unitario es:

null

Entrada Rampa unitaria:

Para evaluar la respuesta de cada sistema a la rampa unitaria debemos en primer lugar definir la función rampa unitaria mediante:

>> t=0:0.01:21;

>> x=t;

>> lsim(sys1,x,t)

null

Gráfica 5 (la salida del sistema 1 en azul)

>> lsim(sys2,x,t)

null

Gráfica 6 (la salida del sistema 2 en azul)

Aplicamos el mismo procedimiento para calcular el valor del error que presenta la respuesta del sys1 a la entrada rampa al cabo de 10 segundos:

null

Gráfica 7 (la salida del sistema 1 en azul)

En la gráfica 7 podemos observar que la salida del sistema de realimentación 1, a los 10 segundos es igual a 4.75. Por lo tanto el error e1(t) de este sistema a la entrada rampa cuando t=10s, es:

null

El error e1rampa(∞) del sistema 1 a la entrada rampa, se puede calcular analíticamente utilizando la constante de posición Kv:

null

El error en estado estable e1ramp(∞) del sistema 1 a la entrada rampa es:

null

Si vemos la gráfica 7 podemos ver que la entrada crece indefinidamente, y también crece infinitamente la separación con la salida del sistema. Por eso el error en estado estable del sistema 1 a la entrada rampa es infinito.

Para el sys2 al cabo de 10 segundos:

null

Gráfica 8 (la salida del sistema 2 en azul)

En la gráfica 8 podemos observar que la salida del sistema de realimentación 2, a los 10 segundos es igual a 9. Por lo tanto el error e2(t) de este sistema a la entrada rampa cuando t=10s, es:

null

El error e2rampa(∞) del sistema 2 a la entrada rampa, se puede calcular analíticamente utilizando la constante de posición Kv:

null

El error en estado estable e2ramp(∞) del sistema 2 a la entrada rampa es:

null

Si vemos la gráfica 8 podemos ver que ambas señales, entrada y salida, crecen en paralelo indefinidamente, con una diferencia constante de 1. En conclusión, el error en estado estable del sistema 2 a la entrada rampa es igual a 1.

Escalón de amplitud factor*2:

Utilizamos el factor=0.7

Por tanto, el escalón tendrá una amplitud de 1.4

Para evaluar la respuesta de cada sistema al escalón de amplitud 1.4 simplemente multiplicamos cada sistema por 1.4 y evaluamos la respuesta para el escalón unitario. A cada sistema nombramos 1.1 y 2.2 respectivamente. Entonces:

>> sys11= 1.4*sys1

>> sys22=1.4* sys2;

null

Procedemos a graficar los sistemas anteriormente definidos:

>> step(sys11)

null

Gráfica 9

>> step(sys22)

null

Gráfica 10

Aplicamos el procedimiento para calcular el valor del error que presenta la respuesta del sys1.1 a la entrada escalón de amplitud 1.4 al cabo de 10 segundos:

null

Gráfica 11

En la gráfica 11 podemos observar que la salida del sistema 1.1, a los 10 segundos es igual a 0.7. Por lo tanto el error, e1.1(t) de este sistema a la entrada escalón con amplitud 1.4 cuando t=10s, es:

null

Utilizando el principio de superposición, podemos calcular el error a la entrada escalón utilizando la constante de posición Kp y sumando 0.4 a la expresión para e1.1step(∞):

null

Dónde:

null

Nota: se determinó Geq mediante la regla siguiente:

null

Por tanto:

null

Se confirma que el error en estado estable del sistema 1.1 a la entrada escalón con amplitud 1.4 es:

null

Aplicamos el procedimiento para calcular el valor del error que presenta la respuesta del sys2.2 a la entrada escalón al cabo de 10 segundos:

null

Gráfica 12

En la gráfica 12 podemos observar que la salida del sistema 2.2, a los 10 segundos es igual a 1.4. Por lo tanto el error, e2.2(t) de este sistema a la entrada escalón con amplitud 1.4 cuando t=10s, es:

null

Se puede calcular el error a la entrada escalón utilizando la constante de posición Kp:

nullDónde:

null

Por tanto:

null

Se confirma que el error en estado estable del sistema 2.2 a la entrada escalón con amplitud 1.4 es:

null

2DA PARTE
  1. Incluir un controlador proporcional, esto es, una ganancia (bloque Gain) en el diagrama. Dar el valor 10 a la ganancia y obtener de nuevo su respuesta ante las entradas utilizadas en el apartado anterior.
  2. De forma análoga, obtener gráficamente el valor del error que presenta la respuesta del sistema al cabo de 10 segundos. Calcular la expresión analítica de dicho error en estado estacionario para cada una de las señales de entrada.

Respuesta: Error Est Estable 2da parte

3RA PARTE

6. El sistema con la función de transferencia 1 se prueba con dos controladores: un P con ganancia proporcional 0.7 y un PI con la misma ganancia proporcional y con ganancia integral 10. Observar la respuesta obtenida ante un escalón unitario para el sistema sin controlador, para el sistema con el controlador P y para el que tiene el PI.

7. Buscar una posible modificación en las ganancias de ambos controladores para mejorar la respuesta.

Respuesta: Error Est Estable 3ra parte

Fuentes:

  1. Control Systems Engineering, Nise
  2. Sistemas de Control Automatico Benjamin C Kuo
  3. Modern_Control_Engineering, Ogata 4t

Te puede interesar también:

Escrito por: Larry Francis Obando – Technical Specialist – Educational Content Writer.

WhatsApp: +34633129287 Atención Inmediata!! 

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34 633129287

Caracas, Quito, Guayaquil, Cuenca

WhatsApp: +34633129287

email: dademuchconnection@gmail.com

Función de Transferencia, Respuesta en el tiempo

FT a partir de la respuesta al escalón unitario de un sistema de primer orden

Sea una planta cuyo comportamiento se modela como un sistema de primer orden. La respuesta de todo el sistema controlado frente a un escalón unitario es la representada en la siguiente figura:

null

Esta planta es controlada mediante un regulador P, cuya ganancia vale 13.37, y el sistema  tiene  realimentación unitaria.

Se pide determinar:

  1. La función de transferencia de la planta.
  2. Se sustituye el controlador proporcional por uno integral, y en el lazo de realimentación se introduce un sensor cuya ganancia estática es 1.1 y cuya constante de tiempo es 1.02 s. Determinar el máximo valor que puede tomar la ganancia del controlador para que el sistema sea estable.

Respuesta:

Debido a que el sistema se comporta como un sistema de primer grado, podemos suponer que la función de transferencia de dicho sistema es de la forma siguiente:

null

La constante de tiempo T es el tiempo en que el sistema alcanza un 63.2% de su valor final. De acuerdo con la gráfica de la respuesta del sistema a la entrada escalón unitario, este valor final es de 0.89, por lo tanto, T es el tiempo en que el sistema alcanza el valor de 0.562:null

null

En la gráfica anterior podemos ver que el valor de 0.562 se logra aproximadamente a los 0.36 s. Entonces:

null

En la función de transferencia predeterminada para el sistema:

null

La variable a se relaciona con la constante de tiempo T de la manera siguiente:

null 

Para encontrar la constante K debemos considerar que analíticamente la respuesta del sistema a la función escalón es como sigue:

null

La antitransformada de Laplace de C(s) nos permite obtener c(t):

null

La ecuación para c(t) nos permite ver que el valor final de la respuesta del sistema es k/a. De la gráfica podemos afirmar entonces que:

nullEs decir:

null

De esta manera podemos afirmar que la función de transferencia del sistema es:

null

Este resultado lo podemos corroborar con la siguiente simulación:

>> Gs=tf([2.47],[1 2.78]);

>> step(Gs)

null

La planta es controlada mediante un regulador P, de ganancia k1=13.37, y realimentación unitaria. Ambos componentes se pueden representar mediante el siguiente diagrama de bloque:

null

Es decir:

null

Dónde:

null

Entonces:nullDe donde:

null

En definitiva, la función de transferencia de la planta es:

null

2da parte

Se sustituye el controlador proporcional por uno integral, y en el lazo de realimentación se introduce un sensor cuya ganancia estática es 1.1 y cuya constante de tiempo es 1.02 s. Determinar el máximo valor que puede tomar la ganancia del controlador para que el sistema sea estable.

Respuesta 2:

La nueva situación se representa mediante el siguiente diagrama de bloques:

null

Dónde:

null

La función de transferencia del lazo realimentado es:

null

La función de transferencia del sistema en su totalidad es:

null

Para estudiar la estabilidad del sistema nos enfocamos en su ecuación característica para aplicar el criterio de Routh-Hurwitz:

null

Para lograr estabilidad deben cumplir estas dos condiciones:

null

Del análisis de estabilidad del sistema concluimos que el valor máximo de la constante del controlador integral para garantizar estabilidad es 13.14.

SIGUIENTE:

ADEMÁS:

Escrito por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – Twitter: @dademuch

Se hacen trabajos, ejercicios, clases online, talleres, laboratorios, Academic Paper, Tesis, Monografías….Entrega Inmediata !!!…Comunícate conmigo a través de:

  • WhatsApp: +34 633129287
  • dademuchconnection@gmail.com

Te brindo toda la asesoría que necesites!! …

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Jaén – España: Tlf. 633129287

Caracas, Quito, Guayaquil, Lima, México, Bogotá, Cochabamba, Santiago.

WhatsApp: +34 633129287

Twitter: @dademuch

Análisis de circuitos eléctricos, Ingeniería Eléctrica

Circuito eléctrico de primer grado – Simulación en Simulink

Objetivo del taller: Simular el comportamiento del circuito eléctrico de la figura 1 utilizando la herramienta de Matlab Simulink:

null

Figura 1

Considerar para los componentes los valores que se indican a continuación:

null

Para cada uno de los circuitos (casos a y b) llevar a cabo las siguientes acciones:

  1. Obtener la función de transferencia.
  2. Realizar un diagrama de bloques en Simulink y obtener la respuesta del circuito a una entrada escalón (step)
    1. Puesto que son sistemas muy rápidos, para realizar la simulación hay que cambiar los valores que Simulink usa por defecto: simular durante 0.05 s en el caso a) y 0.005 s en el caso b).
    2. No olvidar poner el comienzo del escalón unitario en el instante t=0 (doble click sobre el bloque ‘step’ una vez situado en la ventana en la que estamos haciendo el modelo y cambir ‘step time’ a 0)
  3. Calcular sobre la gráfica obtenida en el osciloscopio la constante de tiempo del sistema, la ganancia estática y su tiempo de establecimiento.
  4. Verificar analíticamente los resultados obtenidos en la simulación, es decir, compararlos con los valores que se obtienen al hacer los cálculos matemáticos.
  5. ¿Qué relación hay entre el valor de la constante de tiempo y la velocidad de respuesta del sistema?
  6. Cambiar la entrada y obtener la respuesta del circuito a una entrada rampa unitaria (ramp).
  7. Medir el error en el estado estacionario para los dos circuitos. ¿Qué relación hay entre el valor medido y la constante de tiempo de cada sistema?
Respuesta
  1. Obtener la función de transferencia

Aplicando la ley de voltajes de Kirchhoff al circuito de la figura 1 obtenemos la siguiente relación:null

Suponiendo condiciones iniciales iguales a cero y aplicando la transformada de Laplace a la ecuación anterior obtenemos:nullEs decir:null

De donde:nullLa salida es vo(t):null

La transformada de Laplace de la salida vo(t) es:null

De donde obtenemos la función de trasferencia del sistema:

null

En el caso del sistema a):

nullnullnull

En el caso del sistema b):

nullnullnull

  1. Realizar un diagrama de bloques en Simulink y obtener la respuesta del circuito a una entrada escalón (step)

El siguiente diagrama de bloques representa en general a un sistema de primer orden como lo es la función de transferencia del sistema de la figura 1:

null

Figura 2

En el diagrama de bloques de la figura 2, la variable T es la constante de tiempo del sistema. En el caso del sistema de figura 1, la contante de tiempo del sistema es:

Sistema a):

null

Sistema b):

null

Simulación en Simulink

En Simulink corremos la simulación para el sistema general de la Figura 2 para una entrada escalón unitario y T=1 s, y obtenemos:       null

Figura 3

En la gráfica 1 el tiempo está representado por el eje de las abscisas mientras la amplitud de la salida está representada en el eje de las ordenadas. Y en una gráfica más amplia de la pantalla del scope (Figura 4) podemos ver que la salida sigue a la entrada en estado estable, es decir, su valor final es uno, mientras que en t=T=1 s, la respuesta del sistema ha alcanzado alrededor del 63,2% de su valor final, es decir, 0.633, como lo señala la definición teórica de constante de tiempo de un sistema de primer orden.

null

Gráfica 1

Hacemos la simulación para los sistemas a) y b):

Sistema a):

null

nullnullGráfica 2

La gráfica 2 muestra la forma de la curva para el voltaje de salida del sistema de la figura 1, típica respuesta para un sistema RC en serie, donde se espera que el voltaje en el capacitor sea cero en t=0 s, para luego aumentar exponencialmente hasta igualarse en valor al voltaje de entrada (vin=1, escalón unitario) cuando ha transcurrido bastante tiempo, es decir, en estado estable, cuando el capacitor se comporta como un circuito abierto.

Sistema b):

null

null

null

Gráfica 3

La gráfica 3 muestra nuevamente la forma de la curva para el voltaje de salida del sistema de la figura 1. La única diferencia con respecto a la respuesta de la gráfica 2 es que el tiempo está multiplicado por un factor 10-4, en vez de 10-3,es decir, el sistema b) es 10 veces más rápido que el sistema a).

  1. Calcular sobre la gráfica obtenida en el osciloscopio la constante de tiempo del sistema, la ganancia estática y su tiempo de establecimiento.

Sistema a)

null

Gráfica 4

En la gráfica 4 repetimos la gráfica 2, señalando los parámetros del sistema. La constante de tiempo es T=0.52 ms aproximadamente, mientras que aplicando el criterio del 2% podemos ver que el tiempo de establecimiento es de 2 ms, cuando la salida está a 0.02 puntos de alcanzar su valor final. La ganancia estática es 1.

Sistema b)

null

Gráfica 5

En la gráfica 5 repetimos la gráfica 3, señalando los parámetros del sistema. La constante de tiempo es T=0.052 ms aproximadamente, mientras que aplicando el criterio del 2% podemos ver que el tiempo de establecimiento es de 0.2 ms, cuando la salida está a 0.02 puntos de alcanzar su valor final. La ganancia estática es 1.

  1. Verificar analíticamente los resultados obtenidos en la simulación, es decir, compararlos con los valores que se obtienen al hacer los cálculos matemáticos.

Ya habíamos visto que el siguiente diagrama de bloques representa en general a un sistema de primer orden:

null

Figura 4

La función de transferencia del sistema general de la figura 4 la podemos obtener mediante:

null

En la ecuación (1), T es la constante de tiempo de un sistema de primer orden. Por otra parte, según el criterio del 2%, el tiempo de establecimiento ts en el caso de un sistema de primer orden es:

null

Para cada uno de los sistemas estudiados, a continuación se muestra la función de transferencia con la misma forma de la ecuación (1), la constante de tiempo y el tiempo de establecimiento según el criterio del 2%:

Sistema a):

null

Si comparamos estos resultados con la simulación hecha en Simulink para el sistema a) vemos que se aproximan los valores de ambos resultados:

null

Sistema b):

null

Si comparamos estos resultados con la simulación hecha en Simulink para el sistema b) vemos que se aproximan los valores de ambos resultados:

null

En cuanto a la ganancia estática, se constata que al obtener el límite cuando t tiende a infinito (s tiende a cero) el valor en estado estable de cada sistema es 1, tal cual como se ve en la simulación de cada sistema:

null

  1. ¿Qué relación hay entre el valor de la constante de tiempo y la velocidad de respuesta del sistema?

La relación entre valor de la constante de tiempo T y la velocidad de respuesta del sistema es la siguiente:

  1. Cuando ha pasado un tiempo t=T, el sistema ha alcanzado el 63,2% de su valor final;
  2. Cuando ha pasado un tiempo t=2T, el sistema ha alcanzado el 86,5% de su valor final;
  • Cuando ha pasado un tiempo t=3T, el sistema ha alcanzado el 95% de su valor final;
  1. Cuando ha pasado un tiempo t=4T, el sistema ha alcanzado el 98.2% de su valor final;
  2. Cuando ha pasado un tiempo t=5T, el sistema ha alcanzado el 99.3% de su valor final;

Para poner un ejemplo, ubicamos en la gráfica 6, generada por la simulación para el sistema b) , el valor de la salida para t=3T, corroborando que la salida ya ha alcanzado un valor de 0.95 (95% de su valor final):

null

null

Gráfica 6

También cabe resaltar, como se dijo antes, que el sistema b) es más rápido que el a) porque su constante de tiempo es más pequeña. En conclusión, mientras más pequeña sea la constante de tiempo de un sistema, más rápido es.

  1. Cambiar la entrada y obtener la respuesta del circuito a una entrada rampa unitaria (ramp).

Sistema a):

null

null

Gráfica 7

Sistema b):

null

null

Gráfica 8

  1. Medir el error en el estado estacionario para los dos circuitos. ¿Qué relación hay entre el valor medido y la constante de tiempo de cada sistema?

Por medio de las gráficas 1 y 2 para cada sistema podemos ver que en ambos casos, cuando la entrada es la función escalón unitario, el error en estado estacionario es cero, es decir, el valor de la salida es 1 en estado estacionario, igual al valor de la entrada.

Por otra parte, para visualizar el error en estado estable cuando la entrada es la rampa unitaria, veamos la siguiente gráfica en el caso del sistema a), donde la curva amarilla es la respuesta del sistema y la curva azul es la entrada:

null

Gráfica 9

En la gráfica 9 podemos ver que después una constante de tiempo, el error en estado estable en el sistema a) es aproximadamente de 0.5×10-3. En cuanto al sistema b) cuya entrada y salida se muestran en la gráfica 10, este error es de 0.5×10-4.

null

Gráfica 10

Para corroborar estas afirmaciones vamos a calcular el error en estado estable analíticamente.

Para medir el error en estado estacionario  utilizamos las constantes de posición y velocidad kp y kv, respectivamente, de cada sistema:

Sistema a):

null

Se confirma que el error en estado estacionario del sistema a) para la entrada escalón unitario es:

null

Mientras, el error en estado estacionario del sistema a) para la entrada rampa unitaria es:

null

Como se puede ver, estos resultados corroboran aquellos obtenidos mediante la gráfica para el sistema a). Igual sucede para el sistema b)

Sistema b):

null

De acuerdo con estos últimos resultados es clara la relación que existe entre la constante de tiempo y el error en estado estable para la entrada rampa. Ambos valores son iguales.

Siguiente:

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV Caracas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

 

 

 

 

 

 

 

Análisis de sistemas de control, Variables de estado

Ejemplo de la representación en espacios de estados de y(t) a partir la función de transferencia

Obtener la representación en espacio de estados  de y(t)  a partir de la función de transferencia Y(s)/U(s):

null

HallaPara obtener la representación en espacios de estados del sistema utilizamos la expresión para Y(s)/U(s) de la siguiente manera:

Representamos este sistema mediante el siguiente diagrama de bloques:

null

Dónde:

null

Al aplicar la antitransformada de Laplace obtenemos:

null

Asignamos las siguientes variables de estado:

null

Sustituimos:

null

Además vemos que:

null

De esta manera, la primera parte de la representación en espacios de estados del sistema es:

null

Para determinar el resto de la representación tomamos en cuenta que:

null

Al aplicar la antitransformada de Laplace obtenemos que:

null

Al sustituir las variables de estado ya definidas obtenemos que:

nullPor lo tanto, la salida y(t)  a partir del espacio de estados es:

null

2. Graficar y(t) en Matlab y explicar a partir de la gráfica la estabilidad del sistema.

Para graficar y(t) para una entrada escalón unitario utilizamos la función de transferencia y el siguiente comando en Matlab:

>> sys=tf([1 3 7],[1 6 9 4]);

>> step(sys)

Así obtenemos:

null

En la gráfica anterior podemos ver claramente que el estado final del sistema es estable, ya que el valor de la salida y(t) se estabiliza en:

null

El valor final, o valor en estado estable, para y(t), y el tiempo de establecimiento en t=5.76 s, se pueden comprobar en la gráfica siguiente:

null

Además se le puede preguntar a la cónsola de Matlab si el sistema es estable mediante el siguiente comando (el número 1 significa verdadero):

>> isstable(sys)

ans = 1

SIGUIENTE:

ADEMÁS:

Escrito por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – Twitter: @dademuch

Se hacen trabajos, ejercicios, clases online, talleres, laboratorios, Academic Paper, Tesis, Monografías….Entrega Inmediata !!!…Comunícate conmigo a través de:

  • WhatsApp: +34 633129287
  • dademuchconnection@gmail.com

Te brindo toda la asesoría que necesites!! …

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Jaén – España: Tlf. 633129287

Caracas, Quito, Guayaquil, Lima, México, Bogotá, Cochabamba, Santiago.

WhatsApp: +34 633129287

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Análisis de sistemas de control, Función de Transferencia, Transformada de Laplace

Expansión en fracciones parciales – Solución y(t) a partir de la función de transferencia – ejemplo

Hallar la solución y(t) a partir de la función de transferencia Y(s)/U(s) para una entrada escalón:null

Para hallar y(t) utilizaremos el método de expansión en fracciones parciales. El primer paso es presentar a Y(s)/U(s) en su forma factorizada:

null

La expansión en fracciones parciales es como sigue:

nullDónde:nullPor lo tanto:

null

Para calcular k21 primero derivamos:

nullPor lo tanto:

nullDe esta manera, Y(s)/U(s) se puede escribir como:

null

Al aplicar la antitransformada a la ecuación anterior, obtenemos que:

null

En consecuencia, y(t) para una entrada escalón es:

null

2. Graficar y(t) en Matlab y explicar a partir de la gráfica la estabilidad del sistema.

Para graficar y(t) para una entrada escalón unitario utilizamos la función de transferencia y el siguiente comando en Matlab:

>> sys=tf([1 3 7],[1 6 9 4]);

>> step(sys)

Así obtenemos:

null

En la gráfica anterior podemos ver claramente que el estado final del sistema es estable, ya que el valor de la salida y(t) se estabiliza en:

null

El valor final, o valor en estado estable, para y(t), y el tiempo de establecimiento en t=5.76 s, se pueden comprobar en la gráfica siguiente:

null

Además se le puede preguntar a la cónsola de Matlab si el sistema es estable mediante el siguiente comando (el número 1 significa verdadero):

>> isstable(sys)

ans = 1

SIGUIENTE:

ADEMÁS:

Escrito por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – Twitter: @dademuch

Se hacen trabajos, ejercicios, clases online, talleres, laboratorios, Academic Paper, Tesis, Monografías….Entrega Inmediata !!!…Comunícate conmigo a través de:

  • WhatsApp: +34 633129287
  • dademuchconnection@gmail.com

Te brindo toda la asesoría que necesites!! …

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Jaén – España: Tlf. 633129287

Caracas, Quito, Guayaquil, Lima, México, Bogotá, Cochabamba, Santiago.

WhatsApp: +34 633129287

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

 

Análisis de circuitos eléctricos, Diagramas de bloques, Función de Transferencia, Ingeniería Eléctrica, Sin categoría

Problemas de Modelo de sistemas eléctricos en variable de estado, función de transferencia, diagrama de bloques, simulación en matlab-simulink

Modelo de sistemas eléctricos en Matlab. Para los circuitos de las Figuras 1, 2, 3 y 4, determinar:

  1. Modelo en espacio de estados
  2. Diagrama de bloques a partir del modelo en espacio de estados
  3. Función de transferencia a partir del modelo en espacio de estados
  4. Simular en Matlab – Simulink, según los siguientes estilos de simulación:
    • Diagrama de bloques
    • El modelo en espacio de estados
    • Las funciones de transferencia
    • Interpretar los resultados.

null

null

null

null

Respuesta:

Para adquirir esta solución se facilita pago a través de Paypal o con TC.

Problemas resueltos – Modelos de sistemas eléctricos

Observación: Pago por cuatro (4) ejercicios. Solicitar la entrega en PDF al whatsapp +34633129287

€37,00

Fuente:

  1. Introduccion-al-analisis-de-circuitos-robert-l-boylestad,
  2. Análisis de Redes – Van Valkenburg,
  3. Fundamentos_de_circuitos_electricos_5ta
  4. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Análisis de circuitos eléctricos, Función de Transferencia, Ingeniería Eléctrica

Examen resuelto -Función de transferencia de red eléctrica, diagrama de bloques/flujo, Mason.

Considerando el circuito de la Figura 1 determinar:

a) Las ecuaciones del sistema utilizando la transformada de Laplace; b) Bloques equivalentes a cada ecuación; c) Diagrama de Bloques del Circuito Completo; d) Diagrama de flujo; e) Función de Transferencia Vc3(s)/V(s):

null

Figura 1

Respuesta:

Te recomiendo además: Función de transferencia de sistema eléctrico – Problemas resueltos – Catálogo 5

SIGUIENTE:

Fuente:

  1. Introduccion-al-analisis-de-circuitos-robert-l-boylestad,
  2. Análisis de Redes – Van Valkenburg,
  3. Fundamentos_de_circuitos_electricos_5ta
  4. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Análisis de sistemas de control, Variables de estado

Ejercicio de variables de estado – circuito eléctrico

Calcular el modelo en variables de estado del circuito de la Figura 1, considerando las variables de estado x1=i y x2=Vs, la señal de entrada u=Vi, la salida y=Vs.

null

Figura 1

Determinar la representación en el espacio de estados considerando las siguientes variables de estado:

null

La entrada y la salida del sistema son respectivamente:

nullRespuesta:

null

Derivamos las siguientes ecuaciones a partir de las variables de estado definidas:

null

Despejamos en las ecuaciones 1 y 2 el equivalente a las ecuaciones anteriores, y sustituimos las variables de estado:

null

Por otra parte, la salida es:

null

En definitiva, utilizando las ecuaciones (3),(4) y (5) la representación en espacio de estados del sistema es:

null

Escrito por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Jaén – España: Tlf. 633129287

Caracas, Quito, Guayaquil, Lima, México, Bogotá, Cochabamba, Santiago.

WhatsApp: +34 633129287

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com