Análisis de sistemas de control, Respuesta en el tiempo

Problemas resueltos de Análisis de respuesta transitoria de sistemas lineales – Matlab – Catálogo 9

En esta guía PDF  se analiza la respuesta transitoria de sistemas que forman parte de la cátedra de sistemas de control, señales y sistemas, análisis de redes eléctricas, etc. Cada solución además ofrece un código de Matlab para graficar las señales y/o la simulación de la respuesta. Cada problema tiene un costo de 12.5 euros. La Guía completa tiene un valor de 21.5 euros. Se facilita pago a través de Paypal.

A continuación, los enunciados de problemas resueltos en esta guía.

Problema 1.

Para el sistema de la Figura siguiente:

null

1.a Calcula y justifica el valor de la ganancia estática y la constante de tiempo cuando G(s) y H(s):

nullSimular en Matlab.

1.b Analiza el comportamiento (subamortiguado, sobreamortiguado, críticamente amortiguado, inestable, oscilación mantenida) de la salida para los diferentes valores del parámetro a ante la entrada escalón unitario cuando:

null

El parámetro a toma valores reales. Simular en Matlab.

1.c Calcula frecuencia natural no amortiguada, frecuencia natural amortiguada, factor de amortiguamiento, tiempo de crecimiento, tiempo pico, sobre impulso máximo para el caso b. Simular en Matlab

Problema 2. 

Sea el sistema adjunto:

nullSe pide:

2.a Obtener la función de transferencia del sistema, considerando la tensión ei como la señal de entrada al sistema y la tensión eo como la señal de salida del sistema.

2.b Calcular, a partir del modelo obtenido, el valor de estabilización del sistema ante entrada escalón unitario. ¿Depende de los valores de las resistencias y del condensador?

2.c Obtener el valor del tiempo en el que la salida del sistema alcanza el 95% de su valor final, suponiendo que los valores de R y C son iguales a 1. Simular en Matlab.

Problema 3. 

Para el sistema adjunto:

null

Se pide:

3.a Obtener la función de transferencia del sistema, considerando la tensión vi como la señal de entrada al sistema y la tensión vo como la señal de salida del sistema.

3.b Calcular, a partir del modelo obtenido, el valor de estabilización del sistema ante entrada escalón unitario. ¿Depende del valor de la resistencia R?

3.c Analiza el sistema respecto al parámetro R. Simular en Matlab.

Problema 4 

Se tiene un sistema cuya función de transferencia es:

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-38.png

Ka es una ganancia que se ajusta para obtener una respuesta deseada. Determinar el valor de Ka para obtener la respuesta que se observa en la gráfica 3. Esta salida corresponde a la respuesta al escalón unitario. Simular en Matlab.

La imagen tiene un atributo ALT vacío; su nombre de archivo es image-39.png

Método de pago

Catálogo 9. Problemas resueltos de Respuesta Transitoria – Guía completa

Pago por la guía de ejercicios completa (21,5 euros). Luego de realizar el pago, por favor solicitar la solución en PDF al WhatsApp +34633129287

21,50 €

Catálogo 9. Problemas resueltos de Respuesta Transitoria – Un solo ejercicio

Pago por un solo ejercicio (12.5 euros). Luego de realizar el pago, por favor solicitar la solución en PDF al WhatsApp +34633129287

12,50 €

Puedes consultar también:

Elaborado por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – Twitter: @dademuch

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Jaén – España: Tlf. 633129287

Caracas, Valladolid, Quito, Guayaquil, Ordizia.

WhatsApp: +34 633129287

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Ingeniería Electrónica

Examen de electrónica – Modelo y solución

Los siguientes son los enunciados de este examen con solución incorporada:

null

null

Figura 1

null

null

Figura 2

null

null

Figura 3

null

null

Figura 2

Para ver la respuesta visitar: Examen de Electrónica – Modelo y solución

Te puede interesar también:

  1. Problema de circuito con amplificador BJT
  2. Función de transferencia de circuito con amplificador MOSFET
  3. Problema de par diferencial con MOSFET

Escrito por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – Twitter: @dademuch

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV Caracas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Ingeniería Electrónica, Sin categoría

Problema de circuito con Par Diferencial MOSFET

La Figura 1 muestra un par diferencial con transistores MOSFET:

null

Figura 1

Se pide:

null

Para ver la respuesta visitar: Problema de Par Diferencial con MOSFET

Te puede interesar también:

  1. Problema de circuito con amplificador BJT
  2. Función de transferencia de circuito con amplificador MOSFET
  3. Examen de electrónica – Modelo y solución

Escrito por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – Twitter: @dademuch

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV Caracas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Ingeniería Electrónica

Función de transferencia de circuito con amplificador MOSFET

Hallar la función de transferencia V0(s) / Vgen(s) del circuito con amplificador MOSFET en la Figura 1:

null

Figura 1

Se pide:

null

Para ver la respuesta visitar: Problema con amplificador MOSFET

Te puede interesar también:

  1. Problema de circuito con amplificador BJT
  2. Examen de electrónica – Modelo y solución

Escrito por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – Twitter: @dademuch

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV Caracas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Jaén. 

WhatsApp:  +34633129287   

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Electronic Engineer, Ingeniería Electrónica

Problema de circuito con amplificador BJT

La Figura 1 muestra un amplificador con BJT, conectado a un generador mediante acoplo directo:

null

Figura 1

Se pide:

null

null

Para ver la respuesta visitar: Problema con amplificador BJT

Te puede interesar también:

  1. Problema de par diferencial con MOSFET
  2. Función de transferencia de circuito con amplificador MOSFET
  3. Examen de electrónica – Modelo y solución

Ejemplo examen circuito electrónico

Escrito por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – Twitter: @dademuch

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV Caracas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Análisis de circuitos eléctricos, Ingeniería Eléctrica

Problemas de circuitos con inductancia mutua

El circuito de bobinas acopladas de la Figura 3 se conecta en t=0 a una caja negra en la que se sabe que la tensión vo(t) está dada por la expresión:

null

null

  1. Determinar la expresión para io(t).
  2. Determinar la expresión para v1(t) y otra para v2(t). Verificar que v0(t)=v1(t)+v2(t).
  3. Calcular la energía total de la caja negra ¿se entrega o se extrae energía de la caja negra? Razonar respuesta.
Respuesta:
  1. Determinar la expresión para io(t).

Problema de inductores en serie o en paralelo

Observación: Pago por un ejercicio. Solicitar la entrega en PDF al whatsapp +34633129287

€10,00

Fuente:

  1. Introduccion-al-analisis-de-circuitos-robert-l-boylestad,
  2. Análisis de Redes – Van Valkenburg,
  3. Fundamentos_de_circuitos_electricos_5ta
  4. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Matemática aplicada - Appd Math

Modulación – definición

El proceso de adaptación de la información de banda base a paso banda es lo que se conoce como modulación.

Dependiendo del medio de transmisión, el envío de la señal puede ser más eficiente realizando una transmisión paso banda. Por ejemplo, el espectro radio está dividido en múltiples bandas frecuenciales, por lo que se deberá adecuar la información al canal frecuencial en el cual se va a transmitir. Ese proceso de adaptación de la información de banda base a paso banda es lo que se conoce como modulación.

Dicho proceso involucra dos señales: la señal moduladora (señal en banda base) y la señal portadora (señal paso banda de alta frecuencia). Todas las modulaciones se basan en variar los parámetros de la señal portadora de acuerdo a la moduladora. Esa variación será la que condicione el tipo de modulación: lineal o angular, por citar las dos modulaciones vistas en la asignatura. Una vez transmitida la señal, se irá desplazando a lo largo del medio hasta llegar a su destino. Remarcar la no idealidad del canal, por lo cual la señal perderá calidad debido al ruido del mismo. Finalmente, una vez recibida la señal se realiza el proceso inverso, conocido como demodulación. En dicho proceso, se realizará la conversión de paso banda a banda base.

Remarcar que el concepto de modulación es más amplio al de desplazamiento frecuencial. Si bien en un desplazamiento frecuencial únicamente se traslada la información en banda base a una determinada frecuencia paso banda, en la modulación, además de ese desplazamiento, se realizarán variaciones en esa señal paso banda de acuerdo a la señal moduladora. Esa variación podrá ser lineal o angular, dando lugar a dos grandes familias de modulaciones. A lo largo de la práctica se estudiarán ambas modulaciones en detalle. Para ello, se generará la señal en banda base y se le aplicará la modulación correspondiente; se emulará el envío de la misma en un canal agregándole ruido; y finalmente se demodulará para obtener la señal banda base original. De esta manera se abordará la problemática real inherente a este tipo de sistemas y se comprenderá la importancia del tratamiento estadístico como herramienta de procesado.

Fuentes:

Practica3_Modulaciones

Fundamentos de Comunicación y Transmisión

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV Caracas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Jaén. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Matemática aplicada - Appd Math, Sin categoría

Proceso aleatorio y estocástico

Un proceso ergódico debe ser estacionario, dado que sería imposible estimar una f.d.p. variante en el tiempo a partir de una única realización.

Dado que la idea subyacente del procesado de señales estocásticas es conocer algunos detalles acerca de la f.d.p. que define dicho proceso, un problema importante para el procesado de señales estocásticas es cómo estimar dicha f.d.p. a partir de una única realización de dicho proceso. En otras palabras, cuando tenemos datos de un proceso aleatorio sólo hacen referencia a una realización temporal de dicho proceso. Sin embargo, existen infinidad de posibles realizaciones como esa. Debido a que no podemos estudiarlas todas en la práctica, tenemos que estimar o aproximar el valor del proceso aleatorio global a la información que poseemos en nuestros datos.

La suposición que nos permite tomar esta aproximación se llama ergodicidad, que establece que “los promedios temporales convergen al valor que se pretende estimar del conjunto de todas las realizaciones”. Por ello, un proceso ergódico debe ser estacionario, dado que sería imposible estimar una f.d.p. variante en el tiempo a partir de una única realización.

Para el caso de un proceso aleatorio ergódico, se tendrá que cumplir que las características estadísticas de los promedios temporales sean iguales a sus correspondientes promedios de conjunto. Es decir, si al analizar las propiedades de media y función de autocorrelación (en la práctica se considera suficiente con estas dos) de cada una de las funciones muestrales coinciden con las propiedades de los promedios de conjunto (para un tiempo dado), hablaremos de un proceso aleatorio ergódico y de esta forma podremos conocer las características del proceso global a partir de una única realización del proceso aleatorio.

De la teoría sabemos que para que un proceso aleatorio sea estacionario en sentido amplio, se debe cumplir:

  • La media del conjunto debe ser independiente del tiempo:

null

  • La función de autocorrelación de conjunto depende sólo de la diferencia de tiempos de observación:

null

Para el caso de un proceso aleatorio ergódico, se tendrá que cumplir que las características estadísticas de los promedios temporales sean iguales a sus correspondientes promedios de conjunto. Es decir, si al analizar las propiedades de media y función de autocorrelación (en la práctica se considera suficiente con estas dos) de cada una de las funciones muestrales coinciden con las propiedades de los promedios de conjunto (para un tiempo dado), hablaremos de un proceso aleatorio ergódico y de esta forma podremos conocer las características del proceso global a partir de una única realización del proceso aleatorio.

Fuentes:

Practica 2. Procesos aleatorias, propiedades estadísticas, estacionariedad y ergodicidad

Fundamentos de Comunicación y Transmisión

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV Caracas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Jaén. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com 

Matemática aplicada - Appd Math

Histograma y función de densidad de probabilidad – Pasos para obtener la PDF

La función de densidad de probabilidad (PDF) de la variable aleatoria resultante de observar el proceso en un cierto instante se podrá estimar contando el número de veces a lo largo del intervalo de observación en que la señal toma cada valor de amplitud.

Para caracterizar estadísticamente una señal aleatoria supuesta, procedente de un proceso ergódico, se pueden observar sus valores observados a lo largo del tiempo. Así, los promediados temporales (media, correlación) permiten estimar los correspondientes promediados del proceso (del conjunto de funciones muestrales).

Además, La función de densidad de probabilidad (PDF) de la variable aleatoria resultante de observar el proceso en un cierto instante se podrá estimar contando el número de veces a lo largo del intervalo de observación en que la señal toma cada valor de amplitud. La gráfica resultante de dividir el rango de amplitudes en distintos intervalos y contar el número de muestras de la señal que caen en cada intervalo se denomina histograma, y cuando el intervalo de observación sea muy grande, será una buena estimación de la PDF una vez normalizado.

Mtemáticamente, la PDF (f.d.p.) es:

null

Donde Fx(x) representa la probabilidad acumulativa de que una variable aleatoria x no supere un valor particular de la misma x. La probabilidad de que la variable aleatoria caiga en una región específica del espacio de posibilidades estará dada por la integral de la f.d.p. de esta variable entre uno y otro límite de dicha región:

null

null

Los pasos para la obtención de la PDF son:

  1. Obtención del histograma: se divide el rango de valores de la señal en intervalos (bins) y se cuenta el número de muestras de la señal que se obtiene en cada intervalo de observación.
  2. Promedio del histograma y normalización: se promedian los histogramas correspondientes a distintos intervalos de observación, y el resultado, una vez integrado y normalizado a un valor máximo de 1, es una buena estimación de la función de densidad de probabilidad.

Las señales con las que un ingeniero de Telecomunicación trabaja en la práctica no son, la mayor parte de las veces, deterministas. Por ejemplo, una señal de voz no puede ser descrita por una ecuación, ya que los parámetros que la caracterizan cambian constantemente con el tiempo. Sin embargo, esta señal tiene ciertas características que la definen y distinguen de otras. De hecho, casi todas las señales que se manejan en comunicaciones y en otros muchos campos de la ingeniería y de la ciencia son de naturaleza estocástica (también llamada aleatoria).

La definición de una señal aleatoria se realiza por medio de sus propiedades estadísticas, como son: su función densidad de probabilidad, su función densidad de probabilidad conjunta, su media, su función de autocorrelación, etc.

Fuentes:

Práctica 1. Instrumentación, simulación y radio

Fundamentos de Comunicación y Transmisión

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV Caracas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Análisis de circuitos eléctricos, Ingeniería Eléctrica

Inductancia Mutua – Definición

La inductancia L es el parámetro que relaciona la tensión VL de la bobina con una corriente variable iL que la atraviesa, como se expresa matemáticamente:

null

A esta inductancia también se le conoce como autoinductancia. Consideremos ahora dos circuitos que se enlazan por medio de un campo magnético. Entonces, la tensión que se induce en el segundo circuito se puede relacionar con la corriente variable en el tiempo en el primer circuito por medio de un parámetro que es la inductancia mutua.

null

Para mayor información recomiendo ver la siguiente guía: Capacitores e Inductores – Circuitos y asociaciones

Ejemplo

 

SIGUIENTE:

Fuente:

  1. Introduccion-al-analisis-de-circuitos-robert-l-boylestad,
  2. Análisis de Redes – Van Valkenburg,
  3. Fundamentos_de_circuitos_electricos_5ta
  4. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com