Análisis de circuitos eléctricos, Ingeniería Eléctrica

La respuesta natural de un circuito RLC en paralelo – definición y ejemplos

El primer paso para determinar la respuesta natural del circuito RCL, consiste en deducir la ecuación diferencial que debe cumplir la tensión v(t). de la figura siguiente:

null

Figura 1

Se elige determinar la tensión primero, ya que es la misma para cada componente. Después, es posible encontrar la corriente de rama utilizando la relación de corriente-tensión para el elemento de cada rama.

Se obtiene fácilmente la ecuación diferencial para la tensión sumando las corrientes que se alejan del nudo superior, donde cada corriente se expresa como una función de la tensión desconocida v(t):

null

Si diferenciamos con respecto a t, eliminamos la integral de la ecuación:

null

Ahora ordenamos la ecuación en su forma estándar:

null

Esta es la ecuación diferencial ordinaria de segundo orden con coeficientes constantes.

Al resolver esta ecuación diferencial de segundo orden encontramos que la respuesta natural del circuito RLC en paralelo es de la forma:

null

Donde s1 y s2 son las raíces de la ecuación característica.

Las raíces de la ecuación característica (s1 y s2) están determinadas por los parámetros del circuito RLC. Las condiciones iniciales determinan los valores de A1 y A2. Hay que tener en cuenta que la ecuación (1) habría que cambiarla si s1 y s2 son iguales.

El comportamiento de v(t) depende del valor de s1 y s2. En consecuencia, el primer paso en la determinación de la respuesta natural corresponde a determinar las raíces de la ecuación característica:

null

Dónde:

null

Existen tres posibles resultados. Primero, si null, ambas raíces serán reales y distintas. Aquí se dice que la respuesta de la tensión será sobre-amortiguada. Segundo, si null, tanto s1 como s2 serán complejas, y además, conjugadas entre sí. En esta situación se dice que la respuesta de la tensión será sub-amortiguada. El tercer caso es que null. En este caso, s1 y s2 serán reales e iguales. En este caso, la respuesta de la tensión será amortiguada críticamente.

Ejemplo:

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Se hacen trabajos, se resuelven ejercicios!!

WhatsApp:  +34633129287  Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España. +34633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp:  +34633129287   +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

 

 

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s