Mes: mayo 2020
Problemas de circuitos de segundo orden RLC
Problema 1 de circuito de segundo orden RLC. Considere el circuito de la Figura 1:
Figura 1
Se pide determinar lo siguiente:
- Determine la expresión para VC(t) para t≥0.
- Determine la expresión para IL(t) para t≥0.
- Se podría modificar el amortiguamiento del circuito cambiando R1? Justifique su respuesta.
Respuesta:
Problema 1. Para adquirir esta solución se facilita pago a través de Paypal o con TC.

Problema de circuito de 2do orden RLC
Observación: Pago por un ejercicio. Solicitar la entrega en PDF al whatsapp +34633129287
€18,00
Fuente:
- Introduccion-al-analisis-de-circuitos-robert-l-boylestad,
- Análisis de Redes – Van Valkenburg,
- Fundamentos_de_circuitos_electricos_5ta
- Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab
Revisión literaria hecha por:
Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer
Se resuelven ejercicios…WhatsApp: +34633129287 Atención Inmediata!!
Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)
Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.
Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs
Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.
Contacto: España. +34633129287
Caracas, Quito, Guayaquil, Cuenca.
WhatsApp: +34633129287
FACEBOOK: DademuchConnection
email: dademuchconnection@gmail.com
Convolución de una señal LTI con su respuesta al impulso – Ejemplo con Matlab
La señal x1(t) de la figura se hace pasar a través de un sistema LTI cuya respuesta al impulso es h(t).
- a) ¿Cuál debe ser el valor del parámetro ‘a’ para que el valor máximo de la salida del sistema esté en el instante t=3? Dibuje el resultado de la convolución para dicho valor
- b) ¿Y para que el valor máximo esté en t=6? Dibuje el resultado en este nuevo caso.
La salida y1(t) puede ser determinada mediante la siguiente convolución:
La función x1(t) es un pulso triangular de 4 segundos de ancho, 2 unidades de altura, centrado en t=2s, que puede representarse de la manera siguiente:
La gráfica para x1(t) en el tiempo 0≤t<4 en Matlab se obtiene mediante:
>> t=0:0.1:4;
>> x1=2*tripuls(t-2,4);
>> plot(t,x1)
Por su parte, h(t) es un pulso rectangular unitario de ancho a. El objetivo es darle diferentes valores al parámetro a para aplicar la ecuación (1) y determinar el valor de a para el cual el valor máximo de la salida y1(t) se localiza en el instante t=3s.
La gráfica de h(t) para a=1, que denominaremos h1(t), se obtiene mediante:
>> t=0:0.1:4;
>> h1=rectpuls(t,2);
>> plot(t,h1)
Nota: para evitar la inclinación de la línea que cierra el pulso rectangular de la figura anterior, simplemente aumentamos el muestreo, es decir, por ejemplo, asignamos al tiempo t=0:0.01:4 en vez de t=0:0.1:4. De esta manera aumenta la precisión, pero la amplitud de la convolución también cambia, más no así su posición y su ancho de banda. Esto sucede porque la convolución es en realidad una sumatoria, y al aumentar el número de muestras, aumenta también la cantidad de términos que se suman.
La convolución de x1(t) y h1(t), genera la salida y11(t) para a=1. Continuando con los comandos en Matlab utilizados para generar las gráficas anteriores, y11(t) se puede obtener en mediante:
>> y11=conv(x1,h1)
>> t=0:0.1:8;
>> plot(t,y11)
En la gráfica anterior se observa que el valor máximo de y1(t) está aproximadamente en t=2,5s.
La gráfica para h2(t), es decir a=2, se obtiene mediante:
>> t=0:0.1:4;
>> h2=rectpuls(t,4);
>> plot(t,h2)
La convolución de x1(t) y h2(t), genera la salida y12(t) para a=2. y12(t) y su gráfica, se obtiene mediante:
>> y12=conv(x1,h2);
>> t=0:0.1:8;
>> plot(t,y12)
En la gráfica anterior se observa que el valor máximo de y1(t) está aproximadamente en t=3s.
La gráfica para h3(t), es decir a=3, se obtiene mediante:
>> t=0:0.1:4;
>> h3=rectpuls(t,6);
>> plot(t,h3)
La convolución de x1(t) y h3(t), genera la salida y13(t) para a=3. y13(t) y su gráfica, se obtiene mediante:
>> y13=conv(x1,h3);
>> t=0:0.1:8;
>> plot(t,y13)
En la gráfica anterior se observa que el valor máximo de y1(t) está aproximadamente en t=3.5s.
La gráfica para h4(t), es decir a=4, se obtiene mediante:
>> t=0:0.1:4;
>> h4=rectpuls(t,8);
>> plot(t,h4)
La convolución de x1(t) y h4(t), genera la salida y14(t) para a=4. y14(t) y su gráfica, se obtiene mediante:
>> y14=conv(x1,h4);
>> t=0:0.1:8;
>> plot(t,y14)
En la gráfica anterior se observa que el valor máximo de y1(t) está aproximadamente en t=4s.
Conclusión:
El valor máximo de la salida y1(t) se localiza en el instante t=3s cuando el valor de a es 2 (a=2).
Utilizando el mismo procedimiento, podemos determinar que asignando un valor para a=8, el valor máximo de la salida y1(t) se localiza en el instante t=6s.
t=0:0.1:8;
h5=rectpuls(t,16);
plot(t,h5)
y15=conv(x1,h5);
t=0:0.1:12;
plot(t,y15)
Método gráfico
¿Cuál debe ser el valor del parámetro ‘a’ para que el valor máximo de la salida del sistema esté en el instante t=3? Dibuje el resultado de la convolución para dicho valor
Te puede interesar:
- La respuesta al impulso, la salida y la integral de convolución de un sist. LIT
- Método gráfico de convolución de señales continuas
- Convolución de señales discretas en Matlab
- Convolución en el tiempo continuo – Ejemplos
- Método gráfico de convolución de señales continuas
- Autofunciones de sistemas LTI analógicos
Puedes consultar también:
- Señales elementales en el tiempo continuo – Ejemplos y Simulación en Matlab
- Señales de tiempo continuo – Definición
- Señales de tiempo discreto – muestreo en matlab
- La Transformada de Laplace
- Ejemplo de antitransformada de Laplace
- Ejemplo 1: Transformada de Laplace de una función exponencial – Matlab
- La Función de Transferencia
- Convolución de señales discretas – Sumatoria de convolución
Atención:
Si lo que Usted necesita es resolver con urgencia un problema: Atención:
Si lo que Usted necesita es determinar La Función de Transferencia de un Sistema..Le entregamos la respuesta en dos horas o menos, dependiendo de la complejidad. En digital. Póngase en contacto con nosotros, respuesta inmediata, resolvemos y entregamos la Función de Transferencia de sistemas masa-resorte-amortiguador, eléctricos, electromecánicos, electromotriz, nivel de líquido, térmico, híbridos, rotacional, no lineales, etc.. Opcional, Representación en Variables de Estado. Opcional, Entrevista por Skype para explicar la solución. WhatsApp +34633129287, email: dademuchconnection@gmail.com. |
Revisión literaria hecha por:
Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer
Se hacen trabajos, se resuelven ejercicios!!
WhatsApp: +34633129287 Atención Inmediata!!
Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)
Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.
Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs
Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.
Contacto: España. +34633129287
Caracas, Quito, Guayaquil, Jaén.
WhatsApp: +34633129287
FACEBOOK: DademuchConnection
email: dademuchconnection@gmail.com
La respuesta natural de un circuito RLC en paralelo – definición y ejemplos
El primer paso para determinar la respuesta natural del circuito RCL, consiste en deducir la ecuación diferencial que debe cumplir la tensión v(t). de la figura siguiente:
Figura 1
Se elige determinar la tensión primero, ya que es la misma para cada componente. Después, es posible encontrar la corriente de rama utilizando la relación de corriente-tensión para el elemento de cada rama.
Se obtiene fácilmente la ecuación diferencial para la tensión sumando las corrientes que se alejan del nudo superior, donde cada corriente se expresa como una función de la tensión desconocida v(t):
Si diferenciamos con respecto a t, eliminamos la integral de la ecuación:
Ahora ordenamos la ecuación en su forma estándar:
Esta es la ecuación diferencial ordinaria de segundo orden con coeficientes constantes.
Al resolver esta ecuación diferencial de segundo orden encontramos que la respuesta natural del circuito RLC en paralelo es de la forma:
Donde s1 y s2 son las raíces de la ecuación característica.
Las raíces de la ecuación característica (s1 y s2) están determinadas por los parámetros del circuito RLC. Las condiciones iniciales determinan los valores de A1 y A2. Hay que tener en cuenta que la ecuación (1) habría que cambiarla si s1 y s2 son iguales.
El comportamiento de v(t) depende del valor de s1 y s2. En consecuencia, el primer paso en la determinación de la respuesta natural corresponde a determinar las raíces de la ecuación característica:
Dónde:
Existen tres posibles resultados. Primero, si , ambas raíces serán reales y distintas. Aquí se dice que la respuesta de la tensión será sobre-amortiguada. Segundo, si
, tanto s1 como s2 serán complejas, y además, conjugadas entre sí. En esta situación se dice que la respuesta de la tensión será sub-amortiguada. El tercer caso es que
. En este caso, s1 y s2 serán reales e iguales. En este caso, la respuesta de la tensión será amortiguada críticamente.
Ejemplo:
Revisión literaria hecha por:
Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer
Se hacen trabajos, se resuelven ejercicios!!
WhatsApp: +34633129287 Atención Inmediata!!
Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)
Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.
Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs
Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.
Contacto: España. +34633129287
Caracas, Quito, Guayaquil, Cuenca.
WhatsApp: +34633129287 +593998524011
FACEBOOK: DademuchConnection
email: dademuchconnection@gmail.com
Respuesta al escalón unitario de un circuito RC – Definición y ejemplos
Es posible encontrar la respuesta al escalón de un circuito RC de primer orden analizando el circuito de la figura:
Para esto, calculamos el equivalente Norton de la red conectado al condensador. Sumando las corrientes que se alejan del nudo superior se obtiene la ecuación diferencial:
Si la ecuación anterior la dividimos por C obtenemos:
Al resolver esta ecuación, vemos que:
La constante de tiempo para el circuito RC es igual al producto de la resistencia y la capacidad:
Así, en términos de la constante de tiempo:
La respuesta natural de un circuito RC es una caída exponencial de la corriente inicial. La constante de tiempo RC es un parámetro que regula la velocidad a la que decrece la corriente. La corriente en el condensador se determina directamente mediante:
Donde V0 es el valor inicial del condensador.
Ejemplos:
Siguiente:
- Respuesta natural de un circuito RC – Definición y ejemplos
- Respuesta natural de un circuito RL – Definición y ejemplos
- Respuesta al escalón unitario de un circuito RL – Definición y ejemplos
- Circuitos y sistemas de segundo orden
- Circuito RLC en serie – análisis y ejemplos – circuito de segundo orden
- La función de transferencia de un circuito eléctrico RC, RL o RCL
- Ejemplo de Función de Transferencia de un circuito LC
- Modelo matemático y función de transferencia de un circuito RC – Respuesta Escalón – Simulación en Matlab
- El capacitor – Un circuito abierto para CD
- El Capacitor – Preliminares
- Circuitos con condensadores en serie o en paralelo – Equivalencia, ejemplos
- Circuitos con inductores en serie o en paralelo – Equivalencias, ejemplos
- Problemas con condensadores en serie y en paralelo
- Problemas con inductores en serie y en paralelo
- Inductancia Mutua – Definición
- Problemas de circuitos con inductores
Revisión literaria hecha por:
Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer
Se hacen trabajos, se resuelven ejercicios!!
WhatsApp: +34633129287 Atención Inmediata!!
Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)
Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.
Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV Caracas.
Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.
Contacto: España. +34633129287
Caracas, Quito, Guayaquil, Cuenca.
WhatsApp: +34633129287 +593998524011
FACEBOOK: DademuchConnection
email: dademuchconnection@gmail.com
Respuesta natural y forzada de un circuito RC – Definición y ejemplos
La respuesta natural de un circuito RC se puede determinar a partir del siguiente ejemplo:
Respuesta natural
Suponemos que el interruptor ha estado en la posición “a” por mucho tiempo, lo que permite que el lazo formado por la fuente de tensión constante, Vg, la resistencia R1 y el condensador c alcancen una posición de estado permanente.
Hay que tener en cuenta que el condensador se comporta como un circuito abierto cuando se le aplica una tensión constante. De tal modo, la fuente de tensión no puede sostener una corriente y, por ello, la tensión de la fuente aparece en las terminales del condensador. Debido a que no hay cambio instantáneo de la tensión en los terminales de un condensador, el problema queda reducido a resolver el siguiente circuito:
Podemos encontrar fácilmente la tensión v(t) pensando en términos de tensiones en los nudos. Utilizando el nudo inferior de R y C como nudo de referencia y sumando la corriente que se aleja del nudo superior:
Al resolver esta ecuación (ver Sistema de primer orden), obtenemos que:
Como se ha determinado antes, la tensión inicial del condensador es igual a la tensión de la fuente de tensión Vg:
dónde v(0) es la tensión inicial en el condensador. La constante de tiempo para el circuito RC es igual al producto de la resistencia y la capacidad:
Así, en términos de la constante de tiempo:
La respuesta natural de un circuito RC es una caída exponencial de la tensión inicial. La constante de tiempo RC es un parámetro que regula la velocidad a la que decrece la tensión. La siguiente gráfica representa la ecuación de v(t) y la interpretación gráfica de la constante de tiempo.
Al contar con la expresión para el voltaje, otros parámetros pueden ser determinados:
El cálculo de la respuesta natural de un circuito RC se puede resumir en:
- Determinar la tensión inicial V(0), en el condensador.
- Encontrar la constante de tiempo en el circuito.
- Utilizar la ecuación:
Ejemplos:
Respuesta forzada
Es posible encontrar la respuesta al escalón de un circuito RC de primer orden analizando el circuito de la figura:
Para esto, calculamos el equivalente Norton de la red conectado al condensador equivalente.
Si ecuación la dividimos por C,
Resolviendo esta ecuación (ver Sistema de primer orden) obtenemos que la respuesta completa, natural más forzada, del voltaje del condensador es:
Dónde:
Al contar con la expresión para el voltaje, otros parámetros pueden ser determinados:
Ejemplo:
- Considerar el siguiente ejemplo:
2. Hallar la corriente del nudo A al B:
Respuesta:
Siguiente:
- Sistema de primer orden – Respuesta Transitoria
- Respuesta natural de un circuito RL – Definición y ejemplos
- Respuesta al escalón unitario de un circuito RL – Definición y ejemplos
- Circuitos y sistemas de segundo orden
- Circuito RLC en serie – análisis y ejemplos – circuito de segundo orden
- La función de transferencia de un circuito eléctrico RC, RL o RCL
- Ejemplo de Función de Transferencia de un circuito LC
- Modelo matemático y función de transferencia de un circuito RC – Respuesta Escalón – Simulación en Matlab
- El capacitor – Un circuito abierto para CD
- El Capacitor – Preliminares
- Circuitos con condensadores en serie o en paralelo – Equivalencia, ejemplos
- Circuitos con inductores en serie o en paralelo – Equivalencias, ejemplos
- Problemas con condensadores en serie y en paralelo
- Problemas con inductores en serie y en paralelo
- Inductancia Mutua – Definición
- Problemas de circuitos con inductores
Revisión literaria hecha por:
Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer
Se hacen trabajos, se resuelven ejercicios!!
WhatsApp: +34633129287 Atención Inmediata!!
Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)
Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.
Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV Caracas.
Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.
Contacto: España. +34633129287
Caracas, Quito, Guayaquil, Cuenca.
WhatsApp: +34633129287
FACEBOOK: DademuchConnection
email: dademuchconnection@gmail.com
Series de Taylor y Laurent – Ampliaciones
La siguiente es una guía PDF sobre Series de Taylor y Laurent – Ampliaciones:Series de Taylor y de Laurent – Ampliaciones
Revisión literaria hecha por:
Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer
Se hacen trabajos, se resuelven ejercicios!!
WhatsApp: +34633129287 Atención Inmediata!!
Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)
Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.
Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs
Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.
Contacto: España. +34633129287
Caracas, Quito, Guayaquil, Cuenca.
WhatsApp: +34633129287 +593998524011
FACEBOOK: DademuchConnection
email: dademuchconnection@gmail.com
Respuesta al escalón unitario de un circuito RL – Definición y ejemplos
Para empezar el análisis de la respueta al escalón del circuito RL se considera el circuito de primer orden siguiente:
Vamos a expresar la tensión en la bobina después de cerrarse el interruptor en términos de la corriente. Usamos el análisis de circuitos para obtener la ecuación diferencial que describe al circuito en términos de la variable de interés y luego se usa el cálculo elemental para resolver la ecuación. Después de cerrarse el interruptor, para t≥0 la LVK impone:
Resolver esta ecuación arroja el siguiente resultado:
Cuando la energía inicial de la bobina es cero, Io=0, la ecuación anterior queda reducida a:
Esta ecuación indica que después de que el interruptor se ha cerrado, la corriente aumenta desde 0 hasta un valor final de Vs/R. Es decir, al principio el inductor actúa como un circuito abierto, y luego se estabiliza como un corto circuito.
Constante de tiempo
La expresión para i(t) incluye un término de la forma exp(-Rt/L). El recíproco de este cociente es la constante de tiempo del circuito:
En términos de la contante de tiempo:
La constante de tiempo del circuito determina la velocidad de crecimiento. Una constante de tiempo después de que se ha cerrado el interruptor, la corriente habrá alcanzado aproximadamente el 63% de su valor final:
La siguiente gráfica refleja este comportamiento:
Con la expresión para i(t) podemos hallar la tensión en la bobina:
Podemos notar que la tensión en la bobina es cero antes de que se cierre el interruptor. Luego, al cerrar el interruptor, se ubica abruptamente en el valor de Vs – I(0)R. Esto indica que la bobina se opone a un cambio instantáneo en la corriente, y la mantiene en un valor de I(0) justo después de cerrar el interruptor. Luego decae exponencialmente hasta cero. Cuando la corriente inicial I(0) =0, la ecuación para v(t) se simplifica a:
Si la corriente inicial es 0, la tensión en la bobina es Vs. También se espera que la tensión de la bobina se acerque a 0 cuando t aumenta, debido a que la corriente en el circuito se está aproximando al valor constante Vs/R. En la figura siguiente se representa la tensión y la relación entre la constante de tiempo y la tasa inicial a la cual está disminuyendo la tensión en la bobina.
Ejemplo:
- Respuesta natural de un circuito RL – Definición y ejemplos
- Circuitos y sistemas de segundo orden
- Circuito RLC en serie – análisis y ejemplos – circuito de segundo orden
- La función de transferencia de un circuito eléctrico RC, RL o RCL
- Ejemplo de Función de Transferencia de un circuito LC
- Modelo matemático y función de transferencia de un circuito RC – Respuesta Escalón – Simulación en Matlab
- El capacitor – Un circuito abierto para CD
- El Capacitor – Preliminares
- Circuitos con condensadores en serie o en paralelo – Equivalencia, ejemplos
- Circuitos con inductores en serie o en paralelo – Equivalencias, ejemplos
- Problemas con condensadores en serie y en paralelo
- Problemas con inductores en serie y en paralelo
- Inductancia Mutua – Definición
- Problemas de circuitos con inductores
- Análisis de respuesta transitoria – Problemas resueltos – Catálogo 9
Revisión literaria hecha por:
Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer
Se hacen trabajos, se resuelven ejercicios!!
WhatsApp: +34633129287 Atención Inmediata!!
Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)
Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.
Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV Caracas.
Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.
Contacto: España. +34633129287
Caracas, Quito, Guayaquil, Cuenca.
WhatsApp: +34633129287
FACEBOOK: DademuchConnection
email: dademuchconnection@gmail.com
La respuesta natural y forzada de un circuito RL – Definición y ejemplos
La respuesta natural de un circuito RL se puede describir a través del siguiente ejemplo:
Suponemos que la fuente de corriente independiente genera una corriente constante Is, y que el interruptor ha estado cerrado durante largo tiempo (todas las corrientes y tensiones han alcanzado un valor constante). Sólo las corrientes constantes o cd pueden existir en el circuito antes de que se abra el interruptor y, por tanto, la bobina se presenta como un corto circuito (Ldi/dt =0) antes de liberar la energía almacenada.
Antes de abrir el interruptor:
Debido a que la bobina está en corto circuito, la tensión en la rama inductiva es cero y no hay corriente en R0 ni en R. Por tanto, toda la corriente Is de la fuente aparece en la rama inductiva.
El cálculo de la respuesta natural requiere encontrar la tensión y la corriente en los terminales de la resistencia después de que se haya abierto el interruptor, esto es, después de desconectarse la fuente y cuando la bobina empieza a liberar energía. Si se deja que t=0 sea el instante en que el interruptor se abre, el problema consistirá en encontrar v(t) e i(t) para t=0.
Para t≥0 el circuito queda reducido a:
Para determinar i(t), aplicamos la ley de las voltajes de Kirchhoff. La suma de las tensiones alrededor del lazo cerrado produce:
Donde se usa la convención pasiva de signos. La ecuación anterior se conoce como ecuación diferencial ordinaria de primer orden, ya que contiene términos que implican la derivada ordinaria de una incógnita, esto es, di/dt. El orden más alto de la ecuación es 1, de ahí el término primer orden.
Resolver esta ecuación arroja el siguiente resultado:
Donde Io se puede calcular de despejar:
La siguiente gráfica muestra el comportamiento de i(t):
Constante de tiempo
La expresión para i(t) incluye un término de la forma exp(-Rt/L). El recíproco de este cociente es la constante de tiempo del circuito:
Mediante la constante de tiempo, podemos determinar importantes parámetros del circuito, como los siguientes:
Resumen del cálculo de la respuesta natural RL.
El cálculo de la respuesta natural de un circuito RL se puede resumir así:
- Se determina la corriente inicial Io a través de la bobina.
- Se encuentra la constante de tiempo del circuito.
- Se utiliza la ecuación de i(t) para generar i(t) a partir de Io y t.
- El resto de corrientes y tensiones en el circuito se pueden obtener a partir de i(t).
Ejemplo:
Respuesta forzada
Para empezar el análisis de la respuesta al escalón se considera el siguiente circuito de primer orden:
Vamos a expresar la tensión en la bobina después de cerrarse el interruptor en términos de la corriente. Usamos el análisis de circuitos para obtener la ecuación diferencial que describe al circuito en términos de la variable de interés y luego se usa el cálculo elemental para resolver la ecuación. Después de cerrarse el interruptor, la LTK impone:
Resolviendo obtenemos:
En términos de la constante de tiempo:
La corriente queda expresada como
En cuanto a V(t):
Ejemplo:
Siguiente:
- Respuesta al escalón unitario de un circuito RL – Definición y ejemplos
- Circuitos y sistemas de segundo orden
- Circuito RLC en serie – análisis y ejemplos – circuito de segundo orden
- La función de transferencia de un circuito eléctrico RC, RL o RCL
- Ejemplo de Función de Transferencia de un circuito LC
- Modelo matemático y función de transferencia de un circuito RC – Respuesta Escalón – Simulación en Matlab
- El capacitor – Un circuito abierto para CD
- El Capacitor – Preliminares
- Circuitos con condensadores en serie o en paralelo – Equivalencia, ejemplos
- Circuitos con inductores en serie o en paralelo – Equivalencias, ejemplos
- Problemas con condensadores en serie y en paralelo
- Problemas con inductores en serie y en paralelo
- Inductancia Mutua – Definición
- Problemas de circuitos con inductores
Revisión literaria hecha por:
Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer
Se hacen trabajos, se resuelven ejercicios!!
WhatsApp: +34633129287 Atención Inmediata!!
Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)
Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.
Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV Caracas.
Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.
Contacto: España. +34633129287
Caracas, Quito, Guayaquil, Jaén.
WhatsApp: +34633129287
FACEBOOK: DademuchConnection
email: dademuchconnection@gmail.com
Problemas resueltos de circuitos de primer orden RL y RC
La solución de cada ejercicio tiene un costo de 12.5 euros…cada uno.
Problema 1 de circuito de primer orden RL. Considere el circuito de la Figura 1:
Se pide determinar lo siguiente:
- Si L=10 mH, determine la expresión para iL(t).
- Suponga que la fuente dependiente se cambia por una que tenga una tensión βi(t). ¿Es posible obtener una constante de tiempo de 1 ms variando β? Si es así, encuentre el valor de β. En cualquier caso, justifique su respuesta matemáticamente.
- ¿Se puede conseguir que la respuesta esté no acotada variando β? ¿Para qué valores de β se va a obtener que la respuesta no esté a acotada? En cualquier caso, justifique su respuesta.
Respuesta:
Problema 1. Para adquirir esta solución se facilita pago a través de Paypal o con TC. 12.5 euros.
Problema 2 de circuito de primer orden RL. Considere el circuito de la Figura 2:
Figura 2
Se pide determinar lo siguiente:
- En el circuito de la figura 2, el interruptor 1 lleva abierto mucho tiempo, mientras que el interruptor 2 permanece cerrado. En t=0 se cierra el interruptor 1 mientras que T milisegundos después se abre el interruptor 2. ¿Qué valor de inductancia L debe tener la bobina para que la constante de tiempo del circuito sea de 10 ms si 0≤t≤T?¿Es un valor de indcutancia factible en la práctica?
- Suponga ahora que el interruptor 2 se abre cuando han transcurrido T=20 ms. Determine el valor de la corriente i(t) cuando han transcurrido 10 ms después de que se haya abierto el interruptor 2.
- ¿Cuál es el valor máximo de la energía almacenada en la bobina?
Respuesta:
Problema 2. Para adquirir esta solución se facilita pago a través de Paypal o con TC. 12.5 euros.
Problema 3 de circuito de primer orden RL. Considere el circuito de la Figura 3:
Figura 3
Se pide determinar lo siguiente:
- Calcule el valor C para que la constante de tiempo sea de 100 μs en el intervalo 0≤t≤T ¿Es un valor de capacidad factible en la práctica? Obtenga la expresión para v(t) en ese intervalo.
- Determine la energía entregada a la resistencia R2 en el intervalo en el intervalo 100 μs≤t≤200 μs.
- Determine la energía total entregada a la resistencia R3.
Respuesta:
Problema 3. Para adquirir esta solución se facilita pago a través de Paypal o con TC. 12.5 euros
Problema 4 de circuito de primer orden RL. Considere el circuito de la Figura 4:
Se pide determinar lo siguiente:
- En el circuito de la figura 4 se supone que el condensador no tiene energía almacenada para t≤0. Ajuste el valor de C para obtener una constante de tiempo de 100 μs.
- Obtenga la respuesta al impulso h(t) para vout(t) a partir de la respuesta al escalón. Utilice métodos abreviados.
- Suponga que la tensión de entrada vint(t) tiene la forma:
Determinar la salida vout(t).
Respuesta:
Problema 4. Para adquirir esta solución se facilita pago a través de Paypal o con TC. 12.5 euros
Pago por un ejercicio
Luego del pago por favor escribir al WhatSapp +34633129287
12,50 €
Fuente:
- Introduccion-al-analisis-de-circuitos-robert-l-boylestad,
- Análisis de Redes – Van Valkenburg,
- Fundamentos_de_circuitos_electricos_5ta
- Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab
Revisión literaria hecha por:
Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer
Se resuelven ejercicios…WhatsApp: +34633129287 Atención Inmediata!!
Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)
Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.
Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs
Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.
Contacto: España. +34633129287
Caracas, Valladolid, Quito, Guayaquil, Jaén, Villafranca de Ordizia.
WhatsApp: +34633129287
FACEBOOK: DademuchConnection
email: dademuchconnection@gmail.com