Block Diagram, Control System Analysis, Transfer function

Mass-spring-damper rotational system. Problems solved. Catalog 3

The transfer function of a rotational Mass-Spring-Damper System. 

In this PDF guide, the Transfer Function of the exercises that are most commonly used in the mass-spring-damper system classes that are in turn part of control systems, signals and systems, analysis of electrical networks with DC motor, is determined. electronic systems in mechatronics, etc. It is a good resource to also learn how to obtain the block diagram of the system, or the representation in state variables. Request via email – WhatsApp. Payment is provided by PayPal, Credit or debit card. Cost: € 15

Below, the statements of problems solved in this guide.

1. Given the System of Figure 22, find the transfer function Θ(s)/T(s).

null

2. Given the System of Figure 23, find the transfer function Θ(s)/T(s).

null

3. Given the System of Figure 24, find the transfer functions Θ1(s)/T(s)  and Θ2(s)/T(s).

null

4. Find the state-space representation of the system of the previous exercise, Figure 24, taking Θ1(t)  as the output and T(t) as the input. Build the block diagram of the system and determine the transfer function Θ1(s)/T(s).

5. Given the System of Figure 26, find the transfer function ΘL(s)/Tm(s).

null

6. Given the System of Figure 27, find the transfer functions Θ1(s)/Tm(s) and Θ2(s)/Tm(s).

null

7. Given the System of Figure 28, find the transfer functions Θ1(s)/T(s) and Θ2(s)/T(s).

null

8. Given the System of Figure 29, find the transfer function Θ2(s)/T(s).

null

9. Given the System of Figure 30, find the transfer functions  Θ1(s)/T(s) and Θ2(s)/T(s) . Consider: k1=9, k2=3 N-m/rad, b1=8, b2=1 N-m-s/rad, J1=5, J2=3 Kg-m2.

null

10. Find the state-space representation of the system of the previous exercise, Figure 30, taking Θ2(t) as the output and T(t) as the input. Direct Transform the state-space representation obtained into the transfer function Θ2(s)/T(s). Consider k1=9, k2=3 N-m/rad, b1=8, b2=1 N-m-s/rad, J1=5, J2=3 Kg-m2.

11. Find the state-space representation of the system in Figure 32, taking Θ2(t)  as the output and T(t) as the input. Directly, using Matlab, Transform the state-space representation obtained into the transfer function  Θ2(s)/T(s). Consider k1= k2=1 N-m/rad, b1= b2=1 N-m/rad, J=1 Kg-m2.

null

12. Given the System of Figure 33, find the transfer functions  Θ1(s)/Tm(s) and Θ2(s)/Tm(s).

null

Contact:

  • WhatsApp: +34 633129287
  • dademuchconnection@gmail.com

Immediate attention!!..

Mass-spring-damper rotational system. Problems solved. Catalog 3

In this PDF guide, the Transfer Function of the exercises that are most commonly used in the mass-spring-damper system classes that are in turn part of control systems, signals and systems, analysis of electrical networks with DC motor, is determined. electronic systems in mechatronics, etc. It is a good resource to also learn how to obtain the block diagram of the system, or the representation in state variables. Request via email – WhatsApp

€15,00

You may be also interested in:

Made by Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – Twitter: @dademuch

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Jaén – España: Tlf. 633129287

Caracas, Quito, Guayaquil, Lima, México, Bogotá, Cochabamba, Santiago.

WhatsApp: +34 633129287

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

2 comentarios en “Mass-spring-damper rotational system. Problems solved. Catalog 3”

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s