Los gráficos de Bode son una presentación conveniente de los datos de respuesta de frecuencia para el propósito de estimar la función de transferencia. El Diagrama de Bode permite determinar y extraer partes de la función de transferencia, lo que abrirá el camino a más cálculos para encontrar las partes restantes de dicha función.
Aunque la experiencia y la intuición son invaluables en el proceso, los siguientes pasos ofrecen una guía:
1. Observe las gráficas de magnitud y fase de Bode y estime la configuración de polos y zeros del sistema. Observar la pendiente inicial en el diagrama de magnitud para determinar el tipo de sistema. Observar las excursiones de fase para tener una idea de la diferencia entre el número de polos y el número de zeros.
2. Vea si partes de las curvas de magnitud y fase representan gráficas obvias de respuesta de frecuencia de polo o zero de primer o segundo orden.
3. Observar si hay algún pico revelador o depresiones en la gráfica de magnitud que indique un polo de segundo orden o zero amortiguado, respectivamente.
4. Si alguna respuesta típica de un polo o un zero puede ser identificada, superponer líneas apropiadas de ± 20 o ± 40 dB / década en la curva de magnitud o líneas de ±45°/década en la curva de fase y estimar las frecuencias de ruptura. Para polos o zeros de segundo orden, calcule la relación de amortiguamiento y la frecuencia natural a partir de las curvas estándar.
5. Diseñar una función de transferencia de ganancia unitaria utilizando los polos y zeros encontrados. Obtenga la respuesta de frecuencia de esta función de transferencia y reste esta respuesta de la respuesta de frecuencia anterior, con la que comenzó el ejercicio. Ahora tiene una respuesta de frecuencia de complejidad reducida a partir de la cual comenzar el proceso nuevamente para extraer más información sobre los polos y ceros del sistema. Un programa de computadora como MATLAB es de gran ayuda para este paso.
Example
Encontrar la función de transferencia del sistema cuyo diagrama de Bode se muestra en la Figura 1:
Figura 1
Primero extraigamos los polos subamortigados, basados en el pico en la curva de magnitud. Estimamos que la frecuencia natural está cerca de la frecuencia pico, o aproximadamente 5 rad/s. De la Figura 1, podemos ver un pico alrededor de 6.5 dB, que se interpreta como un factor de amortiguamiento ζ=0,24. La función de transferencia estándar de un sistema de segundo orden con ganancia unitaria es:
Se restan los diagramas de Bode en la Figura 2:
Figura 2
Al superponer una línea de -20 dB/decade en la respuesta de magnitud y una línea de -45°/decade en la respuesta de fase, detectamos un polo final. A partir de la respuesta de fase, estimamos la frecuencia de ruptura a 90 rad/s. Restando la respuesta de G2(s)=90/(s+90) de la respuesta anterior se obtiene la respuesta en la Figura 3.
Figura 3
La figura 3 tiene una curva de magnitud y fase similar a la generada por una función de retraso. Dibujamos una línea de -20 dB/decade y la ajustamos a las curvas. Las frecuencias de ruptura se leen de la figura como 9 y 30 rad/s. Una función de transferencia de ganancia unitaria que contiene un polo en -9 y un cero en -30 es G3(s)=0.3(s+30)/(s+9). Al restar G1(s)G2(s)G3(s), encontramos la respuesta de frecuencia de magnitud plana ± 1 dB y la respuesta de fase plana a -3 ± 5 °. Por lo tanto, concluimos que hemos terminado de extraer las funciones de transferencia dinámica, la cual es:
Es interesante notar que la curva original se obtuvo de la función:
Fuentes:
- Modern_Control_Engineering, Ogata 4t
- Control Systems Engineering, Nise
- Sistemas de Control Automatico, Kuo
Revisión literaria hecha por:
Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer
Se hacen trabajos, se resuelven ejercicios!!
WhatsApp: +34633129287 Atención Inmediata!!
Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)
Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.
Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs
Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.
Contacto: España. +34633129287
Caracas, Quito, Guayaquil, Cuenca.
WhatsApp: +34633129287 +593998524011
FACEBOOK: DademuchConnection
email: dademuchconnection@gmail.com
1 pensamiento sobre “Función de transferencia a partir del diagrama de Bode.”