Matemática aplicada - Appd Math, Probabilidades

Probabilidad condicional

La probabilidad condicional de un evento A, dado un evento B con:nullEstá definida por: 
null

Esta última ecuación especifica una nueva ley de probabilidad (condicional) en el mismo espacio muestral Ω. En particular, todas las propiedades de las leyes de probabilidad siguen siendo válidas para las leyes de probabilidad condicional.

  • Las probabilidades condicionales también se pueden ver como una ley de probabilidad en un nuevo universo B, porque toda la probabilidad condicional se concentra en B.
  • Si los posibles resultados son finitos e igualmente probables, entonces:

null

Explicación

La probabilidad condicional nos proporciona una forma de razonar sobre el resultado de un experimento, basado en información parcial. Aquí hay algunos ejemplos de situaciones que tenemos en mente:

  • En un experimento que involucra dos tiradas sucesivas de un dado, le dicen que la suma de las dos tiradas es 9. ¿Qué tan probable es que la primera tirada fuera un 6?
  • En un juego de adivinanzas de palabras, la primera letra de la palabra es una “t”. ¿Cuál es la probabilidad de que la segunda letra sea “h”?
  • ¿Qué posibilidades hay de que una persona tenga una determinada enfermedad dado que un examen médico fue negativo?
  • Aparece un punto en una pantalla de radar. ¿Qué tan probable es que corresponda a un avión?

En términos más precisos, dado un experimento, espacios de muestra correspondientes y una ley de probabilidad, supongamos que sabemos que el resultado está dentro de un evento dado B. Deseamos cuantificar la probabilidad de que el resultado también pertenezca a otro evento dado A. Por lo tanto, buscamos construir una nueva ley de probabilidad que tenga en cuenta el conocimiento disponible: una ley de probabilidad que para cualquier evento A, especifique la probabilidad condicional de A dado B, denotado por P (AIB)

Una definición apropiada de probabilidad condicional cuando todos los resultados son igualmente probables viene dada por:null

Generalizando el argumento, presentamos la siguiente definición de probabilidad condicional:nullDónde asumimos que:
nullLa probabilidad condicional no está definida si el evento condicionante tiene probabilidad cero. En palabras, fuera de la probabilidad total de los elementos de B, P (AIB) es la fracción que se asigna a los posibles resultados que también pertenecen a A.

Fuentes:

  1. Introduction to probability (bertsekas, 2nd, 2008)
  2. Probability – The Science of Uncertainty and Data (MITx – 6.431x)

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

WhatsApp: +34 633129287 +593998524011 Atención Inmediata!!

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España +34 633129287

Caracas, Quito, Guayaquil, Cuenca.

WhatsApp: +34 633129287 +593998524011  

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

 

 

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s