Matemática básica

Símbolos matemáticos básicos más importantes – Tutor Larry

Lógica de predicados.

Cuantificadores.

  1. Cuantificador existencial (∃). Se utiliza para decretar que un elemento cualquiera, existe en las matemáticas, y exhibe tal o cual propiedad. Se lee existe.
  2. Cuantificador existencial con unicidad (∃!). Decreta que existe un único elemento que cumple con cierta propiedad. Se lee existe un único.
  3. Cuantificador universal (∀). Expresa que tal propiedad se cumple para la totalidad de un conjunto de elementos. Se lee para todos.
  4. Tal que (/). Todos los elementos tal que se verifique una propiedad particular. También se utiliza para este caso el símbolo (:)

Ejemplo:

  1. Supongamos que queremos resolver la siguiente ecuación:

Si sabemos que la ecuación tiene solución, y expresamos esa solución con palabras, diríamos:

Utilizando la notación Lógica de predicados, podemos escribir de forma matemática la declaración anterior de la siguiente manera:

También se puede escribir:

 

  1. La expresión ‘para todo x se cumple que x=x’ se puede escribir como:

 

 

Órdenes parciales.

Comparación.

  1. El símbolo significa menor que, por tanto, la expresión  significa: a menor que b.
  2. El símbolo significa mayor que, por tanto, la expresión  significa: a mayor que b.
  3. El símbolo significa menor o igual que, por tanto, la expresión  significa: a menor igual que b.
  4. El símbolo significa mayor que, por tanto, la expresión  significa: a mayor o igual que b.

 

Teoría de conjuntos.

Pertenencia.

  1. Pertenece a (). Se lee pertenece a. Lo contrario se escribe (). Supongam0s que tenemos un conjunto A, y tenemos un elemento que pertenece al conjunto A, podemos escribir esto como:

Lo cual se lee como  pertenece a A.

Inclusión de símbolos.

  1. Contenido en ().Se lee está contenido en. Lo contrario se escribe (). Supongam0s que tenemos un conjunto A, y tenemos otro conjunto Si el conjunto A está incluido en el conjunto B, podemos escribir esto como:

Lo cual se lee como A está incluido en B.

  1. Subconjunto o igual que ().Se lee es subconjunto de o es igual que. Lo contrario se escribe () que se lee ni subconjunto de o no es igual que.

 

 

 

 

Control System Analysis, PID, PID Control

PI Controller – Proportional Integral – Control System

Steady-state error can be improved by placing an open-loop pole at the origin,
because this increases the system type by one
. For example, a Type 0 system
responding to a step input with a finite error, will responds with zero error if the system
type is increased by one. But, we want to do this without affecting the transient response.

However, if we add a pole at the origin to increase the system type, the angular contribution of the open-loop poles at hypothetical point A is no longer 180, and the root locus no longer goes through point A, as shown in Figure 1.a and 1.b:

Figure 1.

To solve the problem, we also add a zero close to the pole at the origin, as shown
in Figure 2:

Figure 2.

Now the angular contribution of the compensator zero and compensator pole cancel out, point A is still on the root locus, and the system type has been increased. That is how we can improve the steady-state error without affecting the transient response.

A compensator with a pole at the origin and a zero close to the pole is called an ideal integral compensator, or Proportional-plus-Integral PI compensator, which transfer function Gc(s)  is:

Next example allows to find how PI compensation works.

For control system of Figure 3, it is required to reduce steady-state error to zero, through a PI controller, keeping damping at ξ=0.173. The plant transfer function is G(s) and its original controller is represented by the gain k:

Figure 3.

The first step is to evaluate the system before the compensation, then to find the location of the two closed-loop second-order dominant poles  in order to get the damping requiered by the design specifications.

Figure 4 shows the Root-Locus of the system before compensation:

>> sgrid(z,0)
>> s=tf(‘s’);
>> G=1/((s+1)*(s+2)*(s+10));
>> rlocus(G);

Figure 4.

Using the damping line in Matlab, we can find the intersection point between the root-locus and the value ξ=0.173as we can see in Figure 5:

>> z=0.173;
>> sgrid(z,0)

Figure 5.

The intersection of Figure 5 shows us that adjusting the gain to k=165 of the original controller, we obtain the damping requiered: ξ=0.173. We also see in Figure 5 that the closed-loop second-order dominant poles s1 and s2, before compensation are:

Now we look for the third pole in the root locus. In Figure 6 we must set the same gain k=165 at the third pole line, in consequence s3 is located at:

Figure 6.

With k=165 we calculate the steady-state error e1(∞) for a step input, before compensation:

Where kp1 the position constant before compensation:

Where kG(s) is the system forward transfer function multiplied by the adjusted gain, before compensation, as in Figure 3. Therefore:

We add a PI controller in cascade into the system, as in Figure 7:

Figure 7.

Here, we have matched the gain constant of the compensator with the original gain constant, that is to say k=ki. The constant a is determined by the location of compensator zero, wich must be near the compensator pole. That is why we set the compensator zero at s=-0.1 , that is to say  a=0.1. The root locus of this compensated system is in Figure 8:

>> G=(s+0.1)/(s*(s+1)*(s+2)*(s+10));
>> rlocus(G);

Figure 8.

In view of the fact that we want to maintain the transient response as unchanged as possible, in Figure 9 we draw the damping line in the root locus and search for the point of intersection between the lines of the root locus and ξ=0.173:

>> z=0.173;
>> sgrid(z,0);

Figure 9.

Adjusting the gain to k=159 in Figure 9, we obtain the damping ξ=0.173. We see that closed-loop second-order dominant poles s1 and s2, after compensation, are:

Looking for the third pole in the root locus,  we must set the gain k=159 at the third pole line. After that, s3 is located at:

These results show that approximately the values ​​of the 3 poles before and after the PI compensation have been conserved, indicating a similar transient response after correcting the error in steady state from 0.108 to 0, as shwon later.

The forward transfer function G2(s)  of the system after compensation is:

One more time, we calculate steady-state error e2(∞) for a step input, after compensation:

In consequence:

Figure 10 compares the step response of the closed-loop system  before and after compensatio PI:

>> G1=165/((s+1)*(s+2)*(s+10));
>> sys_antes=feedback(G1,1);
>> G2=(159*(s+0.1))/(s*(s+1)*(s+2)*(s+10));
>> sys_despues=feedback(G2,1);
>> step(G1,G2)

Figure 10.

Figure 10 shows that through PI compensation we have managed to improve the steady-state error without considerably modifying the transient response of the original system.

Compensación en Cascada - Lag Compensation

In construction…

Source :

  1. Control Systems Engineering, Nise

Written by Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca. telf – 0998524011

WhatsApp: +593998524011   +593981478463 

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

 

Análisis de sistemas de control, Lugar geométrico de las raíces, PID

Controlador PI – Proporcional Integral – Sistemas de Control

El error en estado estable de un sistema de control puede ser mejorado directamente, colocando un polo en el origen en el camino de transferencia directa (an open-loop pole at the origin), debido a que esto eleva el número de tipo del sistema. Pero generalmente interesa lograr esta reducción sin modificar la respuesta transitoria de dicho sistema.

Por ejemplo, un sistema de tipo 0, que responde a una entrada escalón unitario con un error finito, al ser elevado a sistema tipo 1, responderá a la misma entrada con un error en estado estable igual a cero.

Sin embargo, si añadimos un polo en el origen para incrementar el valor del tipo de sistema, de cero a uno por ejemplo, la contribución angular de los polos a lazo abierto en un punto hipotético A no será de 180, y así el punto A no estará en el LGR (no intercepta el LGR)  del sistema compensado (es decir, se modificará notablemente la respuesta transitoria del sistema), como se puede observar en las Figuras 1.a y 1.b:

Figura 1.

Para resolver este problema, además de añadir el polo en el origen, también añadimos un zero cercano a ese polo en el origen, como se puede observar el la Figura 2:

Figura 2.

Ahora, la contribución angular de los polos y zeros a lazo abierto del punto hipotético A vuelve a ser 180 debido a que la contribución angular del compensador zero se cancela con la compensación angular del compensador polo. Es decir, el punto A vuelve a estar en el LGR del sistema compensado. De esta manera mejoramos el error en estado estable sin modificar la respuesta transitoria del sistema.

Un compensador con un polo en el origen y un zero cerca de dicho polo en el origen, es conocido como  Compensador Ideal Integral (Ideal Integral Compensator), o Proportional-Plus-Integral, mejor conocido como  Controlador PI, cuya función de transferencia Gc(s)  es de la forma:

El siguiente ejemplo nos permitirá descubrir como trabaja un Controlador PI.

Para el sistema de control de la Figura 3, se requiere reducir el error en estado estacionario a cero, mediante un controlador PI, manteniendo un factor de amortiguamiento ξ=0.173. La función de transferencia de la planta es G(s) y su controlador original está representado por la ganancia k:

Figura 3.

El primer paso es evaluar el sistema antes de la compensación, y luego determinar la ubicación de los polos dominantes de segundo orden para el factor de amortiguamiento requerido por el enunciado de diseño.

El Lugar Geométrico de las Raíces del sistema sin compensar, se muestra en la Figura 4:

>> sgrid(z,0)
>> s=tf(‘s’);
>> G=1/((s+1)*(s+2)*(s+10));
>> rlocus(G);

Figura 4.

Utilizando la línea de amortiguamiento con valor de aportada por Matlab, podemos encontrar el punto de intersección entre el LGR del sistema y ξ=0.173como podemos observar en la Figura 5:

>> z=0.173;
>> sgrid(z,0)

Figura 5.

La intersección de la Figura 5 nos muestra que ajustando la ganancia k=165 del sistema original, obtenemos un factor de amortiguamiento ξ=0.173. Vemos también en la Figura 5 que los polos dominantes s1 y s2 de segundo orden del sistema a lazo cerrado, antes de la compensación son:

Ahora buscamos el tercer polo del LGR que requiere el sistema para cumplir con el requerimiento de diseño. Al desplazarnos por el LGR en la Figura 6 hasta alcanzar la ganancia k=165, podemos observar que el tercer polo s3 del sistema a lazo cerrado, está ubicado en:

Figura 6.

Con la ganancia k=165 procedemos a calcular el error en estado estable e1(∞) para una entrada escalón, antes de la compensación:

Donde kp1 es la constante de posición antes de la compensación y se calcula mediante la siguiente fórmula:

Dónde kG(s) es la función de transferencia directa del sistema con el ajuste de ganancia, antes de la compensación, tal como lo muestra la Figura 3. Por tanto:

Añadimos un compensador PI en cascada al sistema, como se muestra en la Figura 7:

Figura 7.

Aquí, hemos hecho coincidir la constante de ganancia del compensador con la constante de ganancia original, es decir, k=ki. La constante a está determinada por la posición de decidamos otorgar al zero del compensador. Debido a que es ideal colocar este zero muy cerca del polo en el origen, seleccionamos el punto sobre el eje real s=-0.1 para ubicar el zero del compensador, es decir  a=0.1. El LGR del sistema así compensado se muestra en la Figura 8:

>> G=(s+0.1)/(s*(s+1)*(s+2)*(s+10));
>> rlocus(G);

Figura 8.

En vista de que queremos mantener inalterada en lo posible la respuesta transitoria, en la Figura 9 trazamos la línea de amortiguamiento en el LGR y buscamos nuevamente el punto de intersección entre ξ=0.173  y las líneas del LGR:

>> z=0.173;
>> sgrid(z,0);

Figura 9.

La Figura 9 nos muestra que ajustando la ganancia k=159 del sistema compensado, obtenemos un factor de amortiguamiento ξ=0.173. Vemos también que los polos dominantes s1 y s2 de segundo orden del sistema a lazo cerrado, después de la compensación son:

Para ubicar el tercer polo a lazo cerrado del LGR que requiere el sistema para cumplir con el requerimiento de diseño, aprovechamos la misma Figura 9 y ajustamos la ganancia en la rama del tercer polo hasta alcanzar k=159, así obtenemos que:

Estos resultados muestran que aproximadamente se han conservado los valores de los 3 polos antes y después de la compensación PI, lo que indica una respuesta transitoria semejante luego de corregir el error en estado estable de 0.108 a 0, como se demuestra a continuación.

La función de transferencia directa G2(s)  de nuestro sistema después de la compensación es:

Calculamos nuevamente el error en estado estable e2(∞) para una entrada escalón, después de la compensación:

En consecuencia:

La Figura 10 compara la respuesta al escalón unitario del sistema  lazo cerrado antes y después de la compensación PI:

>> G1=165/((s+1)*(s+2)*(s+10));
>> sys_antes=feedback(G1,1);
>> G2=(159*(s+0.1))/(s*(s+1)*(s+2)*(s+10));
>> sys_despues=feedback(G2,1);
>> step(G1,G2)

Figura 10.

La Figura 10 demuestra que mediante la compensación PI hemos logrado mejorar el error en estado estable sin modificar considerablemente la respuesta transitoria del sistema original.


Fuente:

  1. Control Systems Engineering, Nise

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España +34 633129287

Caracas, Valladolid, Quito, Guayaquil, Jaén, Villafranca de Ordizia.

WhatsApp: +34 633129287

Atención Inmediata !!

Twitter: @dademuch

FACEBOOK: DademuchConnection

Twitter: @dademuch