## Sketching Root Locus with Matlab – Control Systems

The Root Locus graphically displayed both transient response and stability information.

The locus can be sketched quickly to get a general idea of the changes in transient response generated by changes in gain. Specific points on the locus also can be found accurately to give quantitative design information.

The root locus typically allows us to choose the proper loop gain to meet a transient response specification. As the gain is varied, we move through different regions of response. Setting the gain at a particular value yields the transient response dictated by the poles at that point on the root locus. Thus, we are limited to those responses that exist along the root locus.

We can use Matlab and its Control System Toolbox to plot The Root Locus of a control system, given its characteristic equation or its forward transfer function.

1) As a first example, consider the system which characteristic equation is as follows:

The factored form of this characteristic equation is:

That is to say:

Where G(s)H(s) is the open-loop forward transfer function for a system represented by its block diagram as follows:

The root locus sketching looks as follows:

As it was said before, we can get the root locus for G(s)H(s) with Matlab using the following simple commands:

>> s=tf(‘s’)

>> sys=(1)/(s*(s+3)*(s^2+2*s+2))

>> rlocus(sys)

We obtain the next chart:

When gain K=8.1,  s=0+j1.09. We can see it by clicking on the lower intersection with the imaginary axis. Doing similarly, we can find the value of K at s=0-j1.09.

We can also see in the locus of the roots provided by Matlab for this system, the following:

1. The geometric places are symmetrical with respect to the real axis.
2. The four points at the root locus where K=0 (the poles, where the geometric places begin) are s=0, -3, -1+j, -1-j. Those where K=∞ (the zeros, where the geometric places finishare s=∞, ∞ , ∞ , and .
3. The maximum between n and m is 4, thus we say that the root locus has 4 branches, labeled by green colour ( -3), blue (0), celeste ( -1-j) and red ( -1+j).
4. The number of asymptotes is 4, (n-m=4). Since the number of finite poles exceeds the number of finite zeros, the locus of the roots approaches to s=∞ along the asymptotes.
5. The angles and centroid of the asymptotes are given below:

Once we sketch the root locus, we may want to accurately locate points on the root locus as well as find their associated gain. For example, we might want to know the exact coordinates of the root locus as it crosses the radial line representing 20% overshoot. Further, we also may want the value of gain at that point. Let us to illustrate that with the next example:

2) Given a unity feedback system that has the forward transfer function:

a. Sketch the root locus.
b. Find the imaginary-axis crossing.
c. Find the gain, K, at the jv-axis crossing.
d. Find the break-in point.
e. Find the point where the locus crosses the 0.5 damping ratio line.
f. Find the gain at the point where the locus crosses the 0.5 damping ratio line.
g. Find the range of gain, K, for which the system is stable.

a. Sketch the root locus.

>> numg=poly([2 4]);
>> deng=[1 6 25];
>> G=tf(numg,deng)

G

s^2 – 6 s + 8
————–
s^2 + 6 s + 25

>> rlocus(G);

b. Find the imaginary-axis crossing.

We can see in the chart that when the geometric place cross by the imaginary axe, the poles are at:

c. Find the gain, K, at the jv-axis crossing.

According to the previous graph:

The previous graph also tells us that the system is unstable (negative damping) when:

d. Find the break-in point.

e. Find the point where the locus crosses the 0.5 damping ratio line.
>> z=0.5;
>> sgrid(z,0)

f. Find the gain at the point where the locus crosses the 0.5 damping ratio line.

According to the previous graph:

g. Find the range of gain, K, for which the system is stable.

Previously, we have seen that the system is stable when:

`Proportional Control`

3. Find the gain to meet the damping ξ= 0.5, given the forward transfer function for a control system with unitary feedback:

We already know that this control system has the following configuration:

By adding to this original system a controller to manipulate the K gain of its Root Locus until obtaining the desired damping factor, we will be executing a Proportional Control Action. It is customary to add said controller in the region of low power, in series and just before the plant, or just before the direct transfer function, as illustrated in the following figure:

Adding a proportional controller of gain Kp, lThe forward transfer function G(s) is:

When KP=1, we have the original system.

We will use the following commands of Matlab, rltool:

>> numg=100;
>> deng=[1 16 65 50];
>> G=tf(numg,deng)

G =

100
————————
s^3 + 16 s^2 + 65 s + 50

>> rltool(G)

Doing right click:

Here we get ζ=0.5 when KP=1.46

Comparing the system before and after the compensation:

>> numc=100*1.46;
>> Gc=tf(numc,deng)

Gc =

146
————————
s^3 + 16 s^2 + 65 s + 50

>> sys_before=feedback(G,1);
>> sys_after=feedback(Gc,1);
>> step(sys_before,sys_after)

In blue, the response of the system to a step input before compensation is shown, when KP=1. In red, after compensation, when KP=1.46. The rise time is better (from 0.5626 s to 0.4356 s), but overshot is bigger due to less damping ζ (from 0.626 to 0.502). Steady-state error is also better.

We can see this data using:

>> stepinfo(sys_before)

RiseTime: 0.5626
SettlingTime: 1.7487
Overshoot: 7.5449

>> stepinfo(sys_after)

RiseTime: 0.4356
SettlingTime: 2.0551
Overshoot: 15.0397

>> damp (sys_before)

Damping= 6.26e-01

>> damp (sys_after)

Damping=5.02e-01

Or doing right click on the Root Locus, and then design requirement>new>design requirement type>damping ratio>0.5>ok.

Conclusion

It is confirmed by these examples that the locus of the roots is a powerful method of analysis and design for the stability and transient response of a control system (Evans, 1948, 1950).

The feedback control systems are difficult to understand from the qualitative point of view, so that this understanding depends largely on mathematics. The root locus is the graphic technique that gives us that qualitative description of the performance of the control system we are designing.

Setting the gain at a particular value on the root locus yields the transient response dictated by the poles at that point on the root locus. Thus, we are limited to those responses that exist along the root locus. That is what the following topic is about:

Sources:

1. Control Systems Engineering, Nise
2. Sistemas de Control Automatico Benjamin C Kuo
3. Modern_Control_Engineering, Ogata 4t

Written by: Larry Francis Obando – Technical Specialist – Educational Content Writer.

Mentoring Académico / Empresarial / Emprendedores

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca – Telf. 00593998524011

WhatsApp: +593998524011    /    +593981478463

## Ejemplo de Mecatrónica – Sistema de control de un motor de combustión interna.

La Mecatrónica representa la fusión entre la electrónica, los sistemas de control y la ingeniería mecánica. En esencia, se trata de sistemas dinámicos inteligentes y conectados, cuya estructura se ilustra en la Figura 1:

Como se puede observar en la Figura 1, la Mecatrónica reúne áreas de la tecnología que involucran sensores y sistemas de medición, sistemas de manejo y actuación así como sistemas de microprocesador, junto con el análisis del comportamiento de sistemas y sistemas de control. El flujo de la información a través de estos subsistemas en un sistema mecatrónico se muestra en la Figura 2:

El control de encendido y abastecimiento de combustible del motor de un automóvil es un buen ejemplo de un sistema mecatrónico. En el caso de un motor de combustión interna de cuatro tiempos, cada uno de los cilindros tiene un pistón conectado a un eje de cigüeñal común y cada uno cumple con un proceso secuencial denominado ciclo de cuatro tiempos o ciclo de Otto, mostrado en la Figura 3:

Cuando el pistón desciende, se abre una válvula y entra al cilindro la mezcla de aire y combustible. Cuando el pistón sube, la válvula se cierra y se comprime la mezcla de aire-combustible. Cuando el pistón está cerca de la parte superior del cilindro, una bujía enciende la mezcla y se produce la expansión de los gases calientes. Esta expansión da lugar a que el pistón baje otra vez y el ciclo se repita. Los pistones de cada cilindro están unidos a un eje de cigüeñal común y sus tiempos de trabajo son distintos, de manera que siempre hay energía para hacer girar el eje del cigüeñal.

La potencia y la velocidad del motor se controlan variando el tiempo de encendido y la mezcla aire-combustible. En los motores modernos este control es ejecutado por un Sistema de Mando, el cual se ilustra en la Figura 4:

SIGUIENTE: En construcción…

En el diseño de sistemas mecatrónicos, uno de los pasos incluidos es crear un modelo del sistema. El término modelado se usa para representar el  comportamiento de un sistema real con ecuaciones matemáticas; tales ecuaciones representan la relación entre las entradas y las salidas del sistema. Esta relación permite predecir el comportamiento del sistema cuando es sometido a diferentes entradas. La siguiente es una lista de conocimientos básicos para modelar, analizar y diseñar sistemas mecatrónicos:

• Modelos matemáticos de sistemas físicos:
• Modelo de sistemas electromecánicos
• Sistemas de control
• Sensores y transductores
• Señales y sistemas
• Señales digitales
• Lógica digital
• Sistemas de presentación de datos
• Sistemas de actuación neumática e hidráulica
• Sistemas de actuación eléctrica.

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca. telf – 0998524011

WhatsApp: +593998524011   +593981478463

## Análisis fasorial de sistemas eléctricos de corriente alterna (CA) – Nodos y Mallas

En este artículo vamos a transformar circuitos eléctricos típicos al dominio fasorial (frecuencia) y vamos a resolver problemas utilizando las técnicas de Kirchhoff  (Análisis de Mallas y Nodos).

`Análisis de Mallas (Análisis de Lazo)`

Recordando La Ley de Voltaje de Kirchhoff (LVK), la misma establece que la suma algebraica de las elevaciones y caídas de potencial alrededor de un lazo (o trayectoria) cerrado es cero. Un lazo cerrado es cualquier trayectoria continua que sale de un punto en una dirección y regresa al mismo punto desde otra dirección sin abandonar el circuito. En forma simbólica:

De manera alternativa, la LVK establece que el voltaje aplicado de un circuito en serie equivale a la suma de las caídas de voltaje en los elementos en serie.

La LVK es la base del análisis de malla.

1. Determine la corriente Io en el circuito de la Figura 1.

Claramente tenemos tres mallas. Aplicamos LVK de la siguiente manera:

Malla 1: se corresponde con aquella asignada con la corriente I1. Aplicando Kirchhoff a la malla 1 obtenemos la siguiente ecuación:

La corriente I1 atraviesa tres impedancias, mientras que I2 e I3 atraviesan solo una impedancia, desde el punto de vista de la malla 1.

De acuerdo con Kirchhoff, la caída de voltaje a través de las impedancias que atraviesa la corriente I1 se consideran de signo contrario a aquellas caídas de voltaje que atraviesan otras corriente en sentido contrario. Fíjese por ejemplo que en la impedancia –j2 la corriente I1 va hacia abajo, mientras que la corriente I2 va hacia arriba. Es por ello que la caída de voltaje determinada por el producto –j2* I1 tiene signo positivo en la ecuación (1) mientras que la caída de voltaje determinada por el producto –j2* I2 tiene signo negativo en la ecuación (1). Fíjese que si cambiamos los signos de la ecuación (1), la ecuación es igualmente válida:

Malla 2: se corresponde con aquella asignada con la corriente I2. El mismo criterio que para la malla 1 obtenemos la siguiente ecuación:

Malla 3: se corresponde con aquella asignada con la corriente I3. En este caso, la corriente I3 tiene un valor constante, lo que reduce el número de incógnitas que tenemos en el sistema. Es decir, si:

Entonces, sustituyendo en la ecuaciones (1) y (2), obtenemos que:

Simplificando:

En vista de que nuestro problema consiste en determinar el valor para Io, y que según el diagrama de la Figura 1:

Resolvemos la ecuación (3). Primero hallamos el determinante de la matriz principal:

Luego resolvemos la ecuación (3) para I2:

De esta manera:

Por tanto:

`Análisis de Nodos `

La Ley de Corriente de Kirchhoff (LCK), establece que la suma algebraica de las corrientes que entran y salen de un área, sistema o unión, es cero.

De manera alternativa, la LCK establece que la suma de las corrientes que entran a un área, sistema o unión, debe ser igual a la suma de las corrientes que salen de dicha área, sistema o unión. En forma simbólica:

La LCK es la base del análisis de nodos.

2. Hallar Ix en el circuito de la Figura 2.

Como primer paso debemos transformar los valores al dominio de la frecuencia:

Luego de la transformación, la Figura 3 muestra el circuito equivalente y los nodos que serán considerados para el análisis nodal:

Nodo 1: se corresponde con aquel asignado con el voltaje V1. Aplicando la LCK al nodo 1 obtenemos la siguiente ecuación:

Es decir, las corrientes que entran a un nodo tienen el signo contrario al de las corrientes que salen.

Simplificando la ecuación anterior:

Nodo 2: se corresponde con aquel asignado con el voltaje V2. Aplicando la LCK al nodo 2 obtenemos la siguiente ecuación:

Sabemos además en el nodo 1 que:

Sustituyendo esta última relación en la ecuación (5) obtenemos:

Simplificando, obtenemos que:

Con las ecuaciones (4) y (6) obtenemos la representación matricial del sistema:

Ya que el problema consiste en hallar Ix, podemos resolver la ecuación (7) para V1 como sigue:

Luego resolvemos la ecuación (7) para V1:

De esta manera:

Por tanto:

SIGUIENTE:

Fuentes:

Fuentes:

2. Análisis de Redes – Van Valkenburg,
3. Fundamentos_de_circuitos_electricos_5ta

Escrito por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – Twitter: @dademuch

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Jaén – España: Tlf. 633129287

Caracas, Quito, Guayaquil, Lima, México, Bogotá, Cochabamba, Santiago.

WhatsApp: +34 633129287