Automóvil, Electrical Engineer, Ingeniería Eléctrica, Tren de poder - Dinámica de Fuerzas

Efectos del Gradiente de carretera

ANTERIOR: Gradiente de carretera.

SIGUIENTE: Modelo matemático de un vehículo. Simulación en Matlab/Simulink.

En esta presentación, discutiremos qué tan empinados son las pendientes de carretera en las carreteras reales. También presentaremos una simplificación de la expresión de fuerza de gradiente y otra simplificación de la expresión de resistencia a la marcha.

Estas imágenes muestran diferentes gradientes desde -30% hasta +30% y el ángulo de inclinación del camino alfa correspondiente en grados. Si traducimos alfa en radianes, podemos ver que el ángulo en radianes es casi exactamente el mismo que el gradiente. Esta es una aproximación útil y pronto la usaremos para simplificar los cálculos de fuerza.

Los gradientes de camino típicos están aproximadamente dentro del rango de -10% a +10%. Aunque puede que no parezca un gradiente pronunciado en la figura, ya alrededor del 10%, hay señales de advertencia para gradientes más grandes, ya que el conductor puede necesitar adaptar la conducción al gradiente. Esto es especialmente importante para vehículos pesados, como camiones. Existen gradientes de hasta aproximadamente 20%, pero son raros.

Puede haber algunos caminos con gradientes superiores al 20%, pero pueden verse como casos extremos que la mayoría de los conductores rara vez experimentan.

Para valores pequeños de alfa, tanto el seno alfa como el tangente alfa son iguales a alfa si alfa se expresa en radianes. Como el gradiente es igual a la tangente alfa y ahora sabemos que el seno alfa es igual a alfa y, por lo tanto, también es igual a la tangente alfa, obtenemos que el seno alfa es aproximadamente igual al gradiente de la carretera.

Al trazar la aproximación y la ecuación exacta, podemos ver que son casi exactamente las mismas para los gradientes de baja pendiente. Hasta un 20% de gradiente, el error es menor o igual al 2%. E incluso por encima del 20%, la aproximación es lo suficientemente precisa para muchos propósitos.

Si usamos la aproximación para la fuerza del gradiente y la comparamos con la fuerza requerida para la aceleración, vemos que son muy similares. A partir de esto, podemos observar que la fuerza de gradiente tiene el mismo tamaño que la fuerza requerida para una aceleración si la aceleración de un vehículo es igual a la aceleración de la gravedad, g, multiplicada por el gradiente de la carretera.

Esto se puede ilustrar con un ejemplo. Supongamos que un vehículo tiene exactamente la fuerza de tracción correcta para conducir a una velocidad constante en una carretera llana. ¿Qué pasaría con el vehículo si estuviera conduciendo con la misma fuerza de tracción y la misma velocidad, pero en un gradiente? En un gradiente de -30%, la fuerza del gradiente creará una fuerza neta hacia adelante, que, de acuerdo con lo que acabamos de señalar, dará lugar a una aceleración igual a la aceleración de la gravedad, 9.8 metros por segundo al cuadrado, multiplicada por el gradiente, 30% , que es igual a aproximadamente +3 metros por segundo al cuadrado.

Del mismo modo, por – 20%, obtenemos +2 metros por segundo al cuadrado. Y -10%, obtenemos +1.

Conduciendo hacia arriba la aceleración se vuelve negativa a medida que la fuerza del gradiente cambia de signo. +10% conduce a -1 metro por segundo cuadrado, +20% conduce a -2, y +30% conduce a -3.

Esto ilustra que la fuerza de un gradiente de -10% es suficiente para acelerar el vehículo 1 metro por segundo al cuadrado, o viceversa. Una fuerza que puede acelerar el vehículo 1 metro por segundo al cuadrado es suficiente para subir el gradiente del 10% a velocidad constante.

Acabamos de presentar una aproximación para la fuerza de gradiente y ahora presentaremos una aproximación similar para la resistencia a la marcha. La resistencia al rodamiento depende del gradiente de la carretera, solo porque la fuerza normal entre el vehículo y la carretera es proporcional al coseno alfa.

Sin embargo, para un valor de alfa pequeño, el coseno de alfa es aproximadamente 1. Por lo tanto, para valores de alfa pequeños, no hay dependencia significativa de alfa. La resistencia a la rodadura se puede aproximar como el coeficiente de resistencia a la rodadura multiplicado por la masa de los tiempos del vehículo g.

Por lo tanto, la fuerza de resistencia de rodadura aproximada no es una función del gradiente de la carretera. El error que se presenta al considerar el coseno alfa en 1 para diferentes gradientes de camino se puede ver en el gráfico anterior. Se puede demostrar que el error es menor o igual al 2% para gradientes de carretera de hasta 20%.

La expresión simplificada para resistencia a la rodadura también muestra similitudes con la expresión de fuerza de gradiente simplificada. Esto se puede usar para dibujar otro paralelo, que es útil para entender qué efecto tiene la resistencia a la rodadura. Se puede notar que la fuerza de resistencia a la rodadura es igual a una fuerza de gradiente si el gradiente es igual al coeficiente de resistencia a la rodadura. El coeficiente de resistencia a la rodadura exacto, por supuesto, varía para diferentes vehículos. Pero en las carreteras pavimentadas, la mayoría de los vehículos tienen una resistencia a la rodadura del orden del 1%.

Por lo tanto, la resistencia a la rodadura tiene un efecto similar en el vehículo al que tiene el hecho de conducir una pendiente ascendente con un gradiente constante del 1%.

El efecto de la resistencia a la rodadura se puede entender con un simple ejemplo. La resistencia a la rodadura es lo suficientemente grande como para mantener el vehículo estacionario, pero si el vehículo está en un 1% de pendiente descendente, eso es suficiente para hacer que la fuerza de gradiente sea igual a la fuerza de resistencia de rodadura y el vehículo comenzará a rodar lentamente. Este ejemplo ilustra el hecho de que la resistencia a la rodadura es, de hecho, una fuerza pequeña en comparación con las fuerzas de gradiente y las fuerzas de aceleración. Pero como veremos más adelante, la resistencia a la rodadura sigue siendo muy importante cuando se analiza el consumo total de energía del vehículo, ya que está presente todo el tiempo.

Supongamos que un vehículo conduce 100 kilómetros y tiene que subir un gradiente del 1% todo el tiempo. Eso conducirá a una escalada total de 1% por 100 kilómetros, lo que equivale a 1,000 metros. Entonces, la resistencia a la rodadura causará la misma pérdida de energía en +100 kilómetros que cuando el vehículo sube una montaña de 1.000 metros de altura.

Fuente: Road Gradient Effects del curso Section 1: Vehicles and powertrains

ANTERIOR: Gradiente de carretera.

SIGUIENTE: Modelo matemático de un vehículo. Simulación en Matlab/Simulink.

Escrito por: Larry Francis Obando – Technical Specialist – Educational Content Writer.

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca – Telf. 00593998524011

WhatsApp: +593984950376

email: dademuchconnection@gmail.com

2 comentarios en “Efectos del Gradiente de carretera”

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s